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Star-unitary transformations: From dynamics to irreversibility and stochastic behavior
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We consider a simple model of a classical harmonic oscillator coupled to a field. In standard approaches,
Langevin-type equations fdrare particles are derived from Hamiltonian dynamics. These equations contain
memory terms and are time-reversal invariant. In contrast, the phenomenological Langevin equations have no
memory termgthey are Markovian equationand give a time-evolution split in two branchesmigroups
each of which breaks time symmetry. A standard approach to bridge dynamics with phenomenology is to
consider the Markovian approximation of the former. In this paper, we present a formulation in terms of
dressedparticles, which gives exact Markovian equations. We formulate dressed particles for Poiociare
tegrable systems, through an invertible transformation operatotroduced by Prigogine and co-workers.
is obtained by an extension of the canonigalitary) transformation operatdy that eliminates interactions for
integrable systems. Our extension is based on the removal of divergences due to” Resmaaaces, which
breaks time symmetry. The unitarity bfis extended to “star unitarity” forA. We show thatA -transformed
variables have the same time evolution as stochastic variables obeying Langevin equations, and that
A-transformed distribution functions satisfy exact Fokker-Planck equations. The effects of Gaussian white
noise are obtained by the nondistributive property\ofvith respect to products of dynamical variables.
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[. INTRODUCTION equations of motion. For the Friedrichs model, the quasipar-
ticle consists of the original particle surrounded by a “dress-
In classical physics the basic laws are time reversible. 1fng” cloud of field modes.
we know the Hamiltonian, then we get Hamilton's equations For integrable systems, one can construct transformations
of motion which describe the time evolution of the system inU that completely eliminate the interactions. They bring us to
a time reversible, deterministic way. On the other hand, wex description in terms of free quasiparticles. This is readily
see time irreversibility and stochastic behavior everywhereseen starting with the Liouville equation
How to bridge the gap between theory and reality has been
the subject of many discussions. ii —L )
The main problem is how to extract irreversibility and P~ -Hp
stochasticity out of Hamilton’s equations of motion. This
will be the subject of this paper. Our approach is an extenwhere Ly =i{H, } is the Poisson bracket with the Hamil-
sion of canonical transformations to define dressed particle®®nian. Similar to Eq(1), the Liouvillian is written as a free

or quasiparticle$l]. term plus interactiorLy=Lgy+\Ly. Applying U on both
We consider Hamiltonians that can be written as sides of the Liouville equation, we get
_ J
The first termH, describes a set of noninteracting “bare”
units, while the secondlV describes their interactions (is i ﬂ—:f— 3)
a dimensionless coupling constanSpecifically, we will gt~ -oP

consider the one-dimensional Friedrichs modd| describ-
ing a classical harmonic oscillat@bare particle coupled to ~ Where
an infinite set of bare field modékeat bath This model is

closely related to the Caldeira-Leggett mof#J, which has p=Up, Lo=ULjuL. (4)
been extensively used to study quantum Brownian motion o
[4-9]. The transformatiorl is constructed in such a way thag

In general, bare particles follow a complicated motion,has the same form as the noninteracting Liouvillian, with
due to their interactions. In order to gain a physical insightrenormalized frequencies. Equati8) gives the time evolu-
into their behavior, and also to simplify the equations oftion of the free dressed particles.
motion, one can introduce a change of phase-space variables If U can be constructed through a perturbation expansion
(a canonical transformation The new variables describe in A\, we say the system is integrable in the sense of Poin-
renormalized entities or quasiparticles. After solving thecare For these systems, we can keep a one-to-one correspon-
equations for quasiparticles, one may apply the inverse cadence between the original variables and the transformed
nonical transformation to get the solutions of the originalvariables. With a suitably defined inner product between dy-
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namical variables and ensembles, we can define the Hermitewards the future or towards the past, or both, depending on
ian conjugate transformatiob ™. One then finds that) is  the initial conditions. Taking the well-known Markovian ap-
unitary: UT=U "1, The transformatiotJ thus preserves the Pproximation, one finds that the equation of motion for the
time reversibility of the original Liouville equation. bare particle is split into two branches, one for0 and
Now, if all systems were integrable in Poincareense, another fort<0. As a whole the time-reversal invariance of
this would mean that all the phenomena we observe in naturée¢ motion is kept, but if we pick either branch, time sym-
are equivalent to free motion. This would be hard to recon/Metry is broken. To obtain this splitting into two semigroups

cile with the existence of dissipative phenomena, which ardor the bare particle we have to make approximations. In
essential for the appearance of bifurcations and selfcontrast, in terms of the dressed particle defined throligh

organization[10]. However, for most systems one cannotth's is an exact property. The analytic continuatioriJofan

- . be made to either the upper or lower complex frequenc
constructU by perturbation expansions, dge _to the appears - nes giving exact Marlfc?vian equations thgt gene?ate thye
ance of resonances. Resonances give vanishing denommatg?fo or,t>0 semigroups, respectively. Once we fix the ana-

leading to divergences. These divergences were discover ic continuation, time symmetry is broken.

by Poincare so we will refer to them as Poincasver- The A-transformed functions involve generalized func-
genceghereafter, whenever we speak of integrability or non-jo s “or gistributionsiexamples are the “Gamow modes”
integrability, it will be meant in Poincaiesensg presented in Sec. )V If the initial unperturbed functions

It is precisely for Poincarg nonintegrable systems that formed a Hilbert space, the transformed functions are no
we see irreversible and stochastic behavior, such as BrowRnore in this Hilbert space. In its transformed domadlip,

lan motion. One of the main developments of P”gOg'ne.anq)ehaves as the dissipative collision operatavith complex
co-workers has been to show that one can systematlcallé(igenva|ue$13 14

eliminate the Poincardivergences by regularization of de- In contrast toU, A is no more unitary. Instead, it is “star
nominators[11-15. As a result of this regularization time nitary" [11,15. Furthermore, whileU is distributive with
symmetry Is broken and one O_bta'”s a new type of tranf5f0ri’espect to multilplicationA is nondistributive. As we will
mationA that replaced). This gives a quasiparticle descrip- see, these properties allow us to describe damping and fluc-
tion leading to stochastic or kinetic equations, such as th@,ations associated with noise.
classical Langevin or Fokker-Planck equations, respectively. A basic requirement or is that it is invertible. This is
To see this, we operat& on the Liouville equation connected with the star unitarity of this transformatjsee
comments below Eq.77)]. In addition to this, our construc-
tion of A is based on the following requirements.

(1) The A transformation is obtained by analytic continu-
ation of the unitary transformatiol. When there are no

[ aA =ALyA A
AP~ Abn P,

O resonancesA reduces tdJ.
=P~ bp, 5 (2) A preserves the measure of the phase space.
(3) A maps real variables to real variables.
where (4) A is analytic with respect to the coupling constart
A=0.
p=Ap, O=ALyA"! 6) (5) A leads to closed Markovian kinetic equations.

These conditions still leave some freedom to constiuct
To obtain a specific form of\, we consider the “simplest”

0 is now a collision operator as used in kinetic theory. If we tension ofJ [see Eq.(85) and comments belok

. ) . . e
integrate out the field variables, this becomes, e.g., an exacf(We will focus on the dynamical variables of the particle.
Fokker-Planck operator. Through tie transformation, We e action ofA will be restricted to the subset of phase-
can also describe dressed unstable states in quantum mechngace functions depending only on the particle degrees of

ics [15,16]. One can define as well @i function that has  freedom. Within this subset, we obtain an exact and invert-
strict monotonic behavidrl1]. ible A transformation.

For the Friedrichs model, we have both integrable and Fyrthermore, we will consider the thermodynamic limit of
nonintegrable cases, depending on whether the spectrum gfe field modes, where the total energy of the field is an
the field modes is discretéinite volume L with periodic extensive variable. Then, the average act{dﬂ) of each
boundariepor continuous [ — ). In the first case, we have field modek satisfieq17]
cyclic (although complicatedmotion of the particle, as the
field comes back to the particle through the periodic bound- (J)~0(LY), (7)
aries. In the second case, the field does not come back. f’é
Poincareresonance emerges, since the energy of the particle
is embedded inside the continuous spectrum. The emission L
of the field from the particle leads to radiation damping. EfZEK wk<Jk>HEf dkw(J~O(L), (8
Conversely, the particle is excited when it absorbs the field.

To understand the breaking of time symmetry, we notes proportional to the volumé&. (This does not necessarily
that when there are Poincaresonances, i.e., in the limit  imply that the field is Gibbsiah.The existence of the ther-
—0, the solutions of Hamilton’s equations for the bare par-modynamic limit requires an initially random distribution of
ticle contain a dominant decaying component oriented eithethe phases of the field modgEs].

r L—o. The total energy of the field,
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A different situation occurs if the total energy of the field dimensional space. A quantum version of this model has

is a nonextensive variable. Then, we ha\g)~O(L™%), been studied by FriedricH&] and others.
i.e., we have a vanishing energy density. We will not con-  We write the Hamiltonian of the system in terms of the
sider this case in this paper. bare oscillator and field modes anda,,

In the extensive case, in addition to the damped oscilla-
tion, the particle undergoes an erratic motion due to the ex- . . Y .
citation caused by the field. This erratic motion includes a 1= @181 a1+2k @8k ak+)‘2k Vidayaxtasay),
Brownian motion component, which is Markovian. The ini- (9)
tial randomness of the phases of the field modes is a neces-
sary condition for the appearance of Brownian motion. Inwith a given constant frequeney,>0 for the harmonic os-
addition, it is essential that the fieldsonateswith the par-  cillator (particle, c=1 for the speed of light, and,=|k|
ticle. We need Poincanesonances. Under these conditions,for the field. When\ is small, we can treat the interaction
A permits us to isolate the damping and the Brownian compotential as a perturbation. We assume the system is in a
ponent of the motion. one-dimensional box of size with periodic boundary con-

Our approach can also be formulated in terms of completéitions. Then, the spectrum of the field is discrete, ike.,
sets of projection operato(*), which permit to decom- =2j/L, wherej is an integer. We assume that
pose dynamics into a set of orthogonal “subdynamitsge
Sec. V). Essentially, we introduce a generalized basis that w1# oy forall k. (10
permits us to analyze the motion in terms of strictly Markov-

ian components. In our case, we study the component that The volume dependence of the interactigpis given by

describes Brownian motion. The other components, clumped o P
together, give what is usually called non-Markovian Vk:\/Tvk, (12)

(memory effects[14]. The Brownian component is indepen-

dent of the initial correlations between the particle and the — — —
bath, and in this sense, it has a “universal” character. Wh_erevk—O(l). We assume thaby is real and evenvy

The results presented here are based on Réfsl6, =v-x. Furthermore, we assume that for sniall
where we constructed for the quantum Friedrichs model. —
The main subject in these papers was the decay of unstable V™~ @ (12)

particle states. We showed that thetransformation permits .

us to isolate the exponentiéMarkovian component of the AN example is the Drude-Ullersma forf],

decay, which occurs when the energy of the field is nonex- 12

tensive. The remainingnon-Markovian component gives e @k (13)

the Zeno effecf19] and long tailg20], which are conneted K wil wiy '

to the appearance of a dressing cloud around the bare par-

ticle. The dressed unstable state defined throldtas areal wherew,, is the cutoff frequency of the bath.

average energy and gives an uncertainty relation between the To deal with the continuous spectrum of the field, we take
lifetime and energy(see also Ref[21]). Similar consider- the limit, L—o. In this limit we have

ations can be applied in classical mechahz3).

The present paper is organized as follows. In Secs. Il and 2 2 dk L s S(k
I, we introduce the Friedrichs model and we discuss the T < _’f + g o 0(K).
equations of motion of the bare particle. In the subsequent
sections, we study the evolution of renormalizelessetl ~ We will often use the summation sign with the understanding
particle variables. We consider firf§$ec. IV), the integrable that we replace it by an integral in the limit— .
case where the spectrum of the field is discrete. We can then The bare modes,, a, satisfy the Poisson bracket rela-
define the renormalized variables through the unitary transtion
formation U. In the continuous spectrum limit, the system
becomes nonintegrable. In Sec. V, as a first step to introduce i{a,, az}=3d,p, (19
A, we extend the renormalized particle modes in the discrete
case to the decaying “Gamow” modes in the nonintegrablevhere
case. In Sec. VI, we construdt. In Sec. VII, we show the
correspondence between the solution of the Langevin equa- i{f 9}—2
tion (with Gaussian white noigeand theA -transformed vari- ' T
ables. Finally, in Sec. VIII, we derive a Fokker-Planck equa-
tion for the A-transformed distribution function. Details of (The sum includes the discrete index1 as well as the
calculations are given in the Appendixes. running indexr =Kk.) The bare modes are related to the po-

sition x; and the momenturp, of the particle as

(14

(16)

Il. THE CLASSICAL FRIEDRICHS MODEL

. . - . Mo i
We consider a classical system consisting of a harmonic a;= \ /_1( X, + P
oscillator coupled to a classical scalar field in one- 2 M4

. 17
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andI's=(qs,q5) with s=1k, as the set of particle or field

1
X =—=(a;+aj), modes. We will also denotE; as the set of all field modes
VZ2Ma, I'i={I'\}. We use the notatiodI" for the phase-space vol-
ume element andll’;, dI'; for the particle and the field
AL * components ofil", respectively
pi=—i\—(a—ap), (18 ’
dl'=dl',dl'¢,
and to the field$(x) and its conjugate fieldr(x) as
1\ A dry=dJd;da;, dl¢=]] dida,. (27)
$0=2 (Zw—L (ae™+afe ™), (19 I
K k

" We define as well

(akeikx_ ail(c e—ikX) .

(=i (%

(20)
S =T")=8(31 =3 dar—ap]l o3—30 s a—ap).

The field ¢(x) corresponds to the transverse vector potential (28
in electromagnetism, whiler(x) corresponds to the trans-

verse displacement field. Our Hamiltonian can be seen as We consider ensemble averages as inner products:
simplified version of a classical dipole molecule interacting
with a classical radiation field in the dipole approximation
[23]. For simplicity, we neglect the interactions proportional
to a;a, andaj ay , which correspond to “virtual processes”
in quantum mechanics. This approximation corresponds t
the so-called rotating wave approximatifi@v,4. If we in-
corporate the virtual processes, then we obtain the classical

version of the Caldeira-Leggett model. _ As mentioned in the Introduction, for our model we can
We note that we have amy=w_j degeneracy in our paye poth integrablel( finite) and nonintegrable cases (
Hamiltonian. To_ avoid some complexlty due to this degen-_)oo)_ In the first case, there are no resonarises Eq(10)]
eracy, we rewrite our Hamiltonian in terms of new bareyngas we will see, the the system is integrable in the sense
modes a$22] of Poincare In the second case, the system can become non-
integrable in Poincate sense, due to the emergence of the
resonancew;= wy between the frequencies of the particle

(FY=(Flp)= [ arFypm). 29

gor an operatoP the Hermitian conjugate is defined by

(Flop)={plOTF)*. (30)

H=wq}q;+ % o df O+ AEK Vi(Of O+ a105),

(21
where
(at+a_ /2 for k>0

=aq, = 22
h=d G (ak—a,k)/\/z for k=0, 22

2V, for k>0
V= (23

0 for k=0,

L

V= %Vk- (24)

In this form, the modey, with negativek argument is com-

and the field. This distinction is essential in our construction
of dressed-particle modes. Before coming to this, we will
briefly consider the equations of motion for the bare modes.

I1l. EQUATIONS OF MOTION OF THE BARE-PARTICLE
MODES

The dynamical equations of motion of an oscillator
coupled to a field have been studied by many authors, mainly
using the quantum Caldeira-Leggett mofiet7]. Here, we
will write the equations for the Friedrichs model. In contrast
to the phenomenological equations describing Brownian mo-
tion [25], these equations have memory terines., they have
time-dependent damping and diffusion coefficigntand
their time evolution forms a group, since they are equivalent
to Hamiltonian dynamics.

pletely decoupled from the other degrees of freedom. The

new bare modes also satisfy E@$5) and (16).

A. Non-Markovian Langevin equation

In the subsequent sections, we will use the following no-

tations. We define action and angle variahlgsa through
the relation

gs=VJse %, s=1,k. (25)
We definel’ as the set of all modes,
I'=(91,97, .- Gk.Gk - - ), (26)

Starting from the Hamiltonian equations
ds(t) =expiL yt)as(0)=as(t) =iL as(t),  (31)

we can obtain the exact time evolution of the modess

qs<t)=2 f(1)a,(0), (32)
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wheref (t) are complex functiongsee Appendix A

We will focus our attention on the particle modes P(F,O)Zpl(rl,o)ll_([ Pr(Ji)- (41)
0a(t) = F13(1)q1(0) + > f1i(t)qy(0), Our final assumption is that the volume of the system is
k large, so we neglect terms of the order df 1This approxi-

mation becomes exact in the continuous spectrum Ilmit

: . . —oo, i.e., in the nonintegrable case. We consider the exten-
ql(t):fll(t)%(oﬁg Fa()ak(0). (33 sive case discussed in the Introduction.

Based on EQq(34), we then obtain the non-Markovian

Solving for g;(0) in the first equation and replacing the re- equation(see Appendix €
sult in the second equation, we get

J ) d .
Epl(rlvt): [ |21(t)E(11_'Z’1c

du(t)=—izy()ax() +R(1), (34) x
where 92
+D(1) —— 1 pu(T1,1), (42
d 01901
at where
R(t)=; hi(t)ax(0), (36) D(t)=2k |zl(t)+|zl(t)+ |f1k(t)|2(Jk> (43
hk(t):flk(t)+izl(t)flk(t)_ (37) Equation(42) is of the Fokker-Planck type, but with time-

dependent coefficients.

Equation(34) is a non-Markovian equation, because of the The equations derived in this section are reminiscent of
time dependence of the coefficients. The functipgft)  the phenomenological equations for Brownian motion. How-
=w,(t)—iy(t) gives the instantaneous frequenay(t) and  €Ver the phenomenological equations have important differ-
damping ratey(t) of the oscillator(we note that damping €NCes: they are Markovian, they break time symmetry, and
appears only in the nonintegrable casg(t) is an erratic they describe stochastic processes. One can derive the phe-
function, since it depends on the initial states of all the fielg"®menological equations using approximations, such as the
modesq,(0) (see Appendix B It plays the role of noise. In Markovian approximation. This is shown in Appendix D.

general, this is colored noise, as the functiBft) has _In the rest of the paper, we will study the dynamical evo-
memory in the autocorrelation lution of renormalized modes. In contrast to the bare modes,

the renormalized modes obey exact equations having the
(R*(HR(t'))#0 for t#t’, (38) same evolution as the phenomenological equations. As a
preparation, we first consider the integrable case.
where( ) means ensemble average.
IV. UNITARY TRANSFORMATION FOR INTEGRABLE

B. Non-Markovian Fokker-Planck equation CASE

We can also derive a non-Markovian equation for the par- In this section, we present the properties of the canonical
ticle distribution function transformationU that diagonalizes the Hamiltonian in the
discrete spectrum case, when the size of the Ibi finite.
Later, we will extendU to A through analytic continuation,
for L—. In the integrable case, we can find renormalized
modesQS, QS that diagonalize the Hamiltonian through

which qllows us to calculate averages of functidd€l ;) The new modes are related to the bare modes as
depending only on the particle modes. We assume that

G(T';) is a smooth real function df; that vanishes di;,| Q.=U'q, for s=1k (44)
= and is expandable in the infinite series s s '

(To )= f dr; p(T" 1), (39

in one-to-one correspondence. The operdtbiis unitary
u-t=ut.
* M n
G(dy,a7)= 2 E Gmnd1 (40) The Hamiltonian is diagonalized as

We assume as well thai(I',t) is factorized att=0 into H=>, 5563 Q.. (45)
independent particle and field mode functions and that the

field distributions depend only on the actions. In other words,

we have wherewS are renormalized frequencies.
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The new modes satisfy the Poisson bracket relation
i{Qr vQ:}:
Since the interaction is bilinear in the bare modes, the new

modes can be found explicitly through a linear superpositio
of the bare modeBZZ] For the particle we obtain, from the

equationi{H,Q,}=— 0, Q,

Ors - (46)

61:N%/2 Q1+>\2k Eka), (47)
where
— V
= (48
W)~ Wk
Ni=(1+&)7L  &=\2> c2. (49)
k

The renormalized frequeno&l is given by the root of the
equation

N2V ]?
n2)=z—w— >, :

k' Z— Wy

7(w1)=0, (50)

which reduces taw; when\=0. For the field modes one
can also find explicit formsgsee Appendix A
The perturbation expansion of E@L7) yields

(51)

Q,=U Q1—Q1+2 k+o( 2).

When the spectrum is discrete, the denominator never

PHYSICAL REVIEW E67, 056117 (2003

where in the second equality we used EzB) and the prop-

erty of preservation of the Poisson bracket by canonical
transformation$26]. Hence, the transformed Liouvillialn,
does not contain any interaction terms. Ensemble averages

gpver this transformed density functu;mcan thus be easily

calculated. For example, for

- alUlp)=i (o), 5

and similarly for(p,;) we get, after substituting E¢18) and
integrating by parts,

J — 1 J — — —

E(XD: =(p1), E(PD: —Mwi(Xy). (56)
m

These are the equations for the free harmonic oscillatih

renormalized frequencyw; and renormalized massn

=mw1/51). The interaction with the field is eliminated.
Note that the normal modes are eigenfunctions of the Li-

ouvillian Lo,

LoQi=— w101, L0} =w1q] . (57
This leads to
LuQi=—01Q;, LuQi=w,Q}. (59)
For products of modes, we have
Lo} "ai=[(m—n)w;]a; "a],
LaQF"QI=[(m-n)w:] Q; "Q}. (59)

vanishes; each term in the perturbation series is finite. This

implies integrability in the sense of Poincaté can be con-
structed by a perturbation series in powers\8fwith n=0
integer. In other worddJ is analytic atA =0.

Since the transformatiold is canonical, it is distributive
with respect to multiplication

Ufqqt=[U"q,][UTq*1=Q,Q% . (52)
Hence, we have
UH=U g 5@:@%2 wdigs=Ho. (53

Finally, we note that from distributive property E¢2), we
have

* MmN

Q1 0= (60)

(Utg™U'a)).

V. NONINTEGRABLE CASE: GAMOW MODES

Now we consider the continuous spectrum case, where
the particle frequencw, is inside the range of the continu-
ous spectrunay . In this case, by analytic continuation6f1
anda’l‘ , we can get new modes which are eigenfunctions of

the Liouvillian with complex eigenvalues. These modes are
called Gamow modes. Gamow states have been previously

The transformed HamiltoniabH has the same form of the introduced in quantum mechanics to study unstable states
unperturbed Hamiltoniahly, with renormalized frequencies. [27-32. In classical mechanics, Gamow modes have been
The canonical transformation can also be introduced omtroduced in Ref[22]. In this section, we present the main
the level of statistical ensemblgs as shown in the Intro-  properties of Gamow modes, which will be used for the con-

duction. In Eq.(3), we have struction ofA.
When we go to the continuous limit, we restrict the
strength of the coupling constantso that

)\2 2
j dk vl

Lop=iU{H,p}=i{UH,Up},

d
[E ws< 0G| U, (59
q Qs

(61)
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Then the harmonic oscillator becomes unstable. In this case, The new modes for the ie branch in Eq(62) are given
we have radiation damping. If E¢61) is not satisfied, then by
we go outside the range of applicability of the “rotating
wave approximation’see comment after E420)] as the
Hamiltonian becomes not bounded from below, and gives no
radiation damping33].

: (66)

Q= N%/Z[fo 7\; C QK

In the continuous spectrum case, divergences appear in Vi -1
the construction olJ, due to resonances. For example, the Ck=———» Ni=|1+ A2 cﬁ) , (67)
denominator in Eq(51) may now vanish at the Poincare (2= wy 7 K

resonancev; = wy . We have a divergence in the perturbation ) ) o
expansion in\. To deal with this divergence, we regularize and its complex conjugate, satisfying

the denominator by adding an infinitesimalie. Then, we - - e =
get LyQ:1=—-2,Q;, LuQI=271Q7. (68)

AV The modeQ? decays fort>0 as

C!)l_(l)kiie

Q1=q1+2k Qe+ O(N2). (62)

eiLHt‘Q'*lc _ eiz’{téale —gliog- y)t'éalc (69)
In the continuous limit, the summation goes to an integral. -

We take the limit,L—o first ande—co later. Then the de- (and similarlyQ).

nominator can be interpreted as a distribution under the in- The modes for thetie branch are given by

tegration overk

1 QI =Nyar+1 2 k), (70

— —
w—wtle W1~ Wy

Fimo(w,—wy), (63
and its complex conjugate, satisfying

where? means principal part.
prineipa’ P LuQi=2Q%, LuQi=—2Z Q. (79)

The introduction of € in the continuous limit is related to
a change of the physical situation. In the discrete case, the,ase modes decay for 0.
boundaries of the system cause periodicity in the motion of 1o modes we have introduced have quite different prop-

the particle and the field. In contrast, in the continuous casgies from the usual canonical variables. Their Poisson
the boundaries play no role. In the continuous limit, we can, -kets vanish

have damping of the particle, as the field emitted from the
particle goes away and never comes back. And we can have ; K R, 1
Brownian motion, due to the interaction with the continuous 1Q1.Q1}=11Q1.Q1}=0. (72
set of field modes. The continuous limit may be well ap- owever, the mode®,; andQ* are duals: they form a gen-
proximated by a discrete system during time scales mucEralized é:anonical a%r ! '
shorter than the time scale for which the field goes across the P
boundaries.

In the continuous limit, we can have damping of the par-
ticle either toward the future or toward the past. This corre-r
sponds to the existence of the two branches in Eq. (62).

i{Q,,Qf}=1. (73)

his algebra corresponds to an extension of the usual Lie

) X . algebra including dissipation. An analog of this algebra has
Breaking of time symmetry is connected to resonari8d$ been previously studied in quantum mechari2z—32, in
As shown in Ref[30], continuing the perturbation expan- terms of non-Hilbertian bras and kets '

sion (62) to all orders one obtains new renormalized modes

(Gamow modesassociated with the complex frequency
VI. THE A TRANSFORMATION

z=w,—iy, (64) Using the above results we now introduge In this pa-
B per, we will restrict the action of\ to products of particle
or its complex conjugate; . Here, w, is the renormalized modes of the forng; ™q} . This will be enough to calculate

frequency of the particle, and2>0 is the damping rate. renormalized functions of the particle variablexpandable

The complex frequencies are solutions of the equation in monomialg, which will lead us to the Langevin and
Fokker-Planck equations. The action &Afon more general
)\ZUﬁ functions, including field modes will be considered else-
ni(w)Zw—wl—f dkmzo- (65  where(see also Refd15,27).
k) w

The + (—) superscript indicates that the propagator is first A. Defining A through its action on particle modes

evaluated on the uppélower) half plane ofz and then ana- First, recall that in the integrable case the renormalized
lytically continued toz= w. particle modes are related to the original modes as
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Q,=U'gq;, Q*=UTqr. 74 .
Qmt @ T e e

Q1+7\Ek Cka)
For products of modes we have as well the relatied). In

the continuous spectrum limit, we come to the nonintegrable B * % -
case. As seen in the preceding section, we eliminate Poincare —|N1I(q1 Gt MGy ; qu"“‘qlEk Cic Ak
divergences in single renormalized particle modes by ana-

lytic continuation of frequencies to the complex plape.,

Z 2 . * 2 2%

w; goes toz;) leading to Gamow modes. There are two A g:f Ck G Dk Ak T A Ek: el i |
branches for the continuation, namely, ’

(79
61:> Qu (75) where the prime in the summation medas k’. Going to
Q1. the continuous limit and taking the ensemble average with an
) ] ] ensemblep, the last term becomes
Corresponding to these extensions, we introdticehe ex-
tension ofU in Eq. (74), AU, 2
) ) S el ara0— [ a2 @y, 60
Q:=A'qy, Qi=A'q7, “ (Z_wk)zl

Q.=A"lg;, Q*=A"lg*. (76) where(J,) ={(dx qilp)). This term has a nonvanishing finite
value in the limitL—« if Eq. (7) is satisfied. Furthermore, if

These relations partially defing, by its action on single- the ensemblep belongs to the class of ensembles with
particle modega more complete definition is given below -function singularities in the wave numblerthen Eq.(80)
This definition satisfies the requiremer(®, (3), and (4)  is non-negligible as compared to the average ofdfiey
given in the Introduction. We will comment on the remaining term in Eq.(79). For this class of ensembles, the point con-
requirementg2) and (5) below. Note thatAT# A ! is not  tribution k=k’ is as important as the integration ovier
unitary. Instead, it is “star unitary,” [35,13,14:

_l_ *
A i > (0 e) (3~ O(LO). 8D
In our case, where we restrict the action A&fto particle :
modes, star conjugation has a simple meaning. It simplysee Appendix E This type of ensembles with-function
means taking Hermitian conjugation and changing=  singularities is by no means atypical. An example of this
—i€, so we have, e.dA*(ie)]q;=[AT(—i€)]q;. For the class of ensembles is the Gibbs distribution. For ensembles
general definition of star conjugation, see Héb], and ref-  in this class, we have well-defined intensive and extensive
erences therein. variables in the thermodynamic linfi85].

Due to star unitarity, the existence of the star-conjugate To lowest order, we have in EG80)
transformationA* guarantees the existence of the inverse

Ail- )\Uk )\Uk 3
As mentioned above, we are interested not only in the T T o —atie TO), (82
renormalized modes, but also the renormalized products of (z “’k)zl 1k
modes, .
which leads to
A'qi™al, A~'qr™Maj. (78) 2 2 2
Avk ‘ Uk

— 4
For the integrable case, renormalized products of modes can (z2— w5 _|wl—wk+ie|2 oY
be easily calculated thanks to the distributive propés). 1
However, as shown below, for the nonintegrable case prod- a
ucts of Gamow modes give new Poincadévergences. = :)\2055(w1—wk)+0()\4)—>°°- (83
Hence, due to the requireme stated in the Introduction,

the A transformation has to be nondistributive. This meansrpig diverges wher— 0. Hence, Eq(80) is nonanalytic at
that we still have to define the action &f on products of y\ — gue to the resonance at,=w,. We have Poincére

particle modes.

( _ . divergence in the perturbation series of'g})(A'qy).

Let us first consider the transformed prodUk:fql Qi We note that when the energy of the field is nonextensive,
Late{, we WI||. ge_ner_allze J}th to obtain the expressi¢r®). we have(J,)~O(1/L). The energy density goes to zero in
If AT were distributive,A'g7q; could be expressed as the the infinite volume limit. In this case, the appearance of the
product@’{ Q.= (ATg¥)(ATq,). However, as we show now, Poincaredivergence in Eq(80) has no effect on the particle.
this expression gives Poincadévergences in the thermody- For quantum mechanics the situation is different. We can
namic limit. We have have fluctuations even in nonextensive situatidig due to
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vacuum effects. For example, we obtain, for a two-level To find more general transformed produdtsy; Mg’ , we
atom, an energy fluctuation of the dressed excited statgpply the same logic that led to E(86). Whenever|c,|?

leich is of the order of the decay rqte._This gives an uncerappears i@’l‘ m(NDE, we replace it withé, . This leads tdsee
tainty relation between energy and lifetime. Appendix G
Coming back to our main discussion, we conclude that
ATq¥ g, cannot be expressed as the product(#§) sinceA min(m,n) min! B B
is, by definition, analytic in the coupling constant. To make Afq*™gl= > TmaQl T AYe,

. . = —a)l(n—a)lal !
this transformed product analytic, we make the replacement a0 (m-a)l(n—a)lal

(99)
7\2; |cil 2o Qk:>)\22k &R Ok (84  where mintm,n) is the smaller oim, n, and
where¢, is a suitable analytic function. Due to the require- YEZ by aR Qi - (92
ments onA stated in the Introduction this function is not k

quite arbitrary. Indeed, in the integrable case the tgfm 0 . .
Id apoear ifU o 4. as\2S,c2q* [see Eq.47)]. In Note thatb,~O(1/L). Hence,Y~O(L") only if the field
would app RERCH KCkk Gk aLanl obeys the thermodynamic limit condition, ). Otherwise

the nonintegrable Caf}i is extended tay or ¢, and be- Y vanishes as L/and A" becomes distributive. Also, when
comes complex. Taking into account the requiremefis  there are no resonances, becomes real and both, andY

(3), and(4) in the Introduction, we conclude that a suitable yanish. ThemA T reduces tdJ " [see Eq(60)]. In short, both
extension oEﬁ to the nonintegrable case is the linear superthermodynamic limit and resonances are necessary to obtain
position nondistributivity of AT in Eq. (92), which, as we will see in

5 the following section, gives the fluctuations found in Brown-
&=rcgtec, r+rr=1, (85  jan motion.
For A~ 'gq¥™q}, we obtain the expressio91) with

wherer is a complex constant to be determined. The relation. ~, . ,
1,Q7 replaced byQ,,Q7 , respectively.

r+r*=1 is the simplest relation that guarantegseduces Q

togﬁ in the integrable cadesee also the comments below Eq. o ) )
(F13)]. B. Obtaining closed Markovian equations
So we have48] The A transformation, we have presented satisfies all our
requirements(1)—(4) stated in the Introduction. Now we
Aa*g.=0* 0.+ beq O, 86 show thatA also satisjies the rt_aquireme(ﬁb, r_1ame|y, thatA
19 = Q1 Qs Ek Aic G (86) gives closed Markovian equations. To obtain closed Markov-
ian kinetic equations, we first operate on the Liouville
where equation, to obtain E(5). Kinetic equations involve a pro-
b= N2INA| (=l cul?+ &), 8 jection (o_r a_par) of the.ensemblep. In_ order forA to give
=MIN (= ed*+ 60 7 Glosed kinetic of equations, we require that the transformed

As shown in Appendix F using the requiremédgj, we ob-  Liouvillian ‘6 in Eq. (5) leaves subspaces corresponding to

tain projections ofp invariant. We will represent these subspaces
exp —ia/2) by projection operator®(*), which are orthogonal and com-
B s = —j lete in the domain o#),
r 2 cosald) N;=|N,|exp(—ia), 89 p
giving a concrete form of\ in Eq. (86). By including the PWpM=ps = > pMI=1. (93

term by in Eq. (86), we have removed the Poincadéver-
gence in the product of Gamow modes. As a consequence, . . -
The invariance property of is
ATqfa;#(ATad)(ATgy). (89) o
PMg="9P™), (94)
This shows the nondistributive property Af
For weak coupling, the approximate valuelgfis given  Thanks to this commutation property, we obtain from &j.

by [15] closed Markovian equations for the projectionspof
2 )\Zvﬁyz

) B
"l oy 0 oo, ®

This has a sharp peak ai,=w; with a width y. It corre-  We chooseP") as eigenprojectors df,. We havel ,P")
sponds to the line shape of emission and absorption of thew P, wherew(" are the eigenvalues. Then, for the
field by the renormalized particle. integrable case the relatioi®4) is automatically satisfied,
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since in this casé reduces tol,, the renormalized free _ () o

Liouvillian with eigenprojector®(*). p(t)_EV ATP p(t)_EV I*p(0). (100
In the Friedrichs model, the(*) subspaces consist of mo-

nomials (or superposition of monomiglsof the field and

particle modes. For example, the monomials This shows that, as pointed out in the Introduction, dynamics

is decomposed into a set of components obeying Markovian
equations. In order to actually use Ed.00, we need to

(96)  know all the componentsP™p(t) [or equivalently,
1™ p(t)]. At the present moment, we have only obtained a
belong to the same subspaBé!® with eigenvaluew™  restricted set of these. This is enough for our present goal.
=w,— wy. Rather than solving the original equations of motierhich
One may introduce a Hilbert space structure for the eigenean be done by other standard methaalsr goal is to show
functions ofL,, including suitable normalization constants that Brownian motion, Gaussian white noise, and damping
in the Segal-Bargmann representatj@d]. We also note that are part of dynamics seen in tide representation.

AT transformed variablea TP(")A generate the kinetic equa- ~ The contruction ofA\ we have presented here is based on
tion (95) as we have(A TPMA|p(t) )= (A|P™M[p). the renormalized particle modes. A more general construc-
Now we verify that the relatioii94) is satisfied for the\ ~ tion of A starts with the commutation relatidd4) together
transformation we have constructed. We restrict ourselves t¢ith the other requirements stated in the Introduction. The
the components associated with the monomials in(§.  Main idea is to associate a “degree of correlation” with each
These belong to eigenspaces lof with eigenvalues i Subspac®(”). Dynamics induces transitions among different

ai qe=P"™afax, afaaa=P"™aia.’a,

—n)w;. We denote the corresponding projectorsP48™. P(V.) subspaces. We have a “dynamics of correlatiofs].
Using Eq.(14) in Appendix | with q;=0, we find This allows us to perform the regularization of denominators
of U in a systematic way, depending on types of transitions
ptq,{ mqh=[(mZ: —nz)q gy — 2i ymnY]g? m—lqg— L (from lower to higher correlations or vice vejsahich leads

9 to A. The interested reader can find a presentation of this
97) formulation in Refs[11,15,23.

and similarly

VIl. COMPARISON WITH THE PHENOMENOLOGICAL

#m—1_n—-1
1 q - LANGEVIN EQUATION

(99)

B3 " =[(mz—nz)gig,+2i ymnYlq

_ _ _ In this section, we discuss the relation between the solu-
Both the left-hand side and the right-hand side of these twa@ion of the “phenomenological” Langevin equation for the
equations belong to the same eigenspB€®”. This illus-  Friedrichs model and\ ' transformed particle modeg.e.,
trates the statement thatleaves the subspac&$” invari-  dressed modgsWe will focus on theA ™ transformation, so
ant, satisfying the requireme(t). that the transformed variables decay for0 [49] [see Eq.
(mn) . : ~ . : equations for dressed modes have the same solution.
P is not an eigenprojector of. This is quite natural,

since the kinetic processes include both the decay of the The phenomenological Langevin equation for the Brown-

particle modegthrough emission of the fieldand the ab- Ia;s t:ﬁ;rr;gpr:((;sggllator appropiate for the Friedrichs model
sorption of the field modes. These correspond to the first ang
second terms inside brackets in E¢87) and (98), respec- d
tively. A PN «

Y (D= —i2:8,()+R(), (101
C. I subdynamics

We comment on the theory & subdynamics, developed whereR(t) is a complex noise sourdeee Eq(34)]. We use
by the Brussels schogll]. We introduce the projectors the hats to denote “phenomenological” variables. The com-

plex coefficientz;=w,;—i7y gives the frequency and the
damping rate of the oscillator. We assuﬁa(st) has the fol-

Similar to Eq.(93), they are orthogonal and complete. From [0Wing properties.

Eq. (94), it follows thatIT®L,=L,4I1"). Hence, these pro- (1) R*(t) and R(t") have thes-function (white-nois¢

jectors define independent subspaces that follow indepergorrelation:

dent, closed dynamics. The projectors themselves may be

written in terms of generalized eigenstate4 gf, which give Bk (1 D1\ — P2 St/

a complex spectral representation of this operfidi. (REOR)=Rea(t=t"), (102
From the completeness relation of tR&” or II*) pro-

jectors, we can recover the time evolution in the originaIWhereQ means noise average.

variables as (2) R(t) has the Gaussian property

MM=A"1pMA, (99
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<R*(tl) - R*(tm)R(ti) - R(té)) <q1rk(t)q1r(t)>_|'5kl

< 'thf;dtlﬁ* (tl)e—ii’l‘tle—iilt
- 5m“a|%irs<ﬁ*(til)ﬁ(tflﬁ' (R (4 R() ).

t R [
xf dtzR(tZ)e'21‘2>)
(103 0
A Ri(1—e 2"
The noise constan®, is determined in Appendix H using =116y o
equipartition of energy and assuming the bath is at tempera- Y
ture T. The result isR2=2ykgT/w;. keT)'
Equation(101) corresponds to the equations =116y —| (1—e” 2‘yt)' (110
wl
i;( S p1(t) () - Substituting Eq(107) and Eq.(110) into Eq. (109, we get
1 - ~ ]
dt . . min(m,n) min!
2k Mgy AN — al(mz} —nzy)t R
; (q1"(Hai(t))=e ! |Zo (m=NI(n—=D

G =—7Pa(t) Mok () +B(1), (109 ol
X Q™" '(0)&2'(0)(%) (e27"-1)".
w

whereA(t) andB(t) are independent Gaussian white noises !
[36]. These equations describe a damped harmonic oscillator (111

with random momentum and force termgt) and B(t), he ab h th
respectively. The equations are symmetrical under rescalddoW We can compare ;;H? J?v:ameﬁpressmn with the time-
position and momentum exchange, which is consistent wit/§V0lved dressed produ A'q;"q;. We havelsee Egs.

the same symmetry of the Hamiltonian. (68) and (91)]

The solution of Eq(10)) is given by

n

. m!n!
@A Tg; a3~ 3
02(t) = G1a(t) + A (1), (108) =0 (m—a)i(n-a)tal
% ei(mz’{ 7nzl)te2yatb* mfaénfaYa_
where
(112
Gra(t)=01(0) 1, (107 Writing
a a'
~ o o o 2yat_ 29t |
qlr(t)Ee_'thfodt’R(t’)e‘zlt : (108 e Eo (a—I)! (e7"=1) 113
. andl’=a-1I, we have
The termqq,(t) describes the damped harmonic oscillator
without noise, and the terﬁpl (t) describes the behavior due ) m!n!
to the noise. r et Ta M= 2o 2 (Mm=1=1")n=1=1")H"
For later comparison, we calculate the autocorrelation I'=0 T
function (g% ™(t)q7(t)). We have X gi{mZ —nz)tExm=1-1"Gn-1-1"yl+1’
. . . . R . X (e27—1)
<q;”‘(t)q?(t)>=<[q’{a(t)+qir(t)]’"[qla(t)+q1,(t)]”> ]
m!n! .
m n ntoL :2 wel(mé—nzﬁt
=2 2 e k)'k' (n—nmdia © e .
! (m=D!(n—1)!
X Qi (D(ATA (DAL (1) (109
o (M=I=1")(n=1—=1")1"
The quantity (% (t)g},(t)) is nonzero only wherk=I, x QM-I gn-1=l'ylyl (et — 1),
as we can see from EQq(103. Considering the fact (114
that the number of sets of all possible pairs in
(R*(ty) ... R*(t)R(t})) ... R(t))) isl!, we have Using Eq.(91) again, we obtain
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n

_ m!n! kgT kgT

iILHt A T* Mo — ni(mZ —nzg)t B! "B

oA AT e I T IT > b= b~ = (119
x(ATg™ gl Y€ -1)" (115

Note thata)k’1 does not make any divergence for smill
Comparing Eqs(111) and (115, we see the direct corre- Sinceby is proportional tovg~ wy for smallk.

spondences In short, we obtain a complete correspondence between
A-transformed modes and Langevin modsse Eq.(116)].
21‘:’21, The systematic removal of Poincadivergences in the\
transformation gives the Gaussian white-noise structure.
o Y= 2 by i (116 VIIl. THE FOKKER-PLANCK EQUATION

pm ot e Using the above results, we can now derive the Fokker-
* | * ~
(91 "(D)q1(t))y=e™HA (g1 "ay). Planck equation for the transformed density functipn

The form and time evolution of the ensemble average of the - Ap. We start with the transformed equatipsee Eq(6)]

Langevin equation variables are the same as those of J
A-transformed variables. Furthermore, if we take the en- i—p=0p. (120)
semble average oATq’l‘ Mg}, we see a closer correspon- at

dence. Let us assume that the field actigrobeys the un-

perturbed Gibbs distribution. The initial distributiqry(T")
has the forn{with B=1/(kgT)]

We derive the Fokker-Planck equation fgy, g7 . We fol-

low the standard derivation found in textboolsee Refs.

[26,37]), but now in terms ofA. Consider a test function
- G(g41,97), which is smooth and vanishes |af;|=. Mul-
pO(F):CPOl(JLal)eXF( —,3% wak>v (117 tiplying this on both sides of Eq120) and integrating over

the phase space, we have
whereC is a normalization constankg is the Boltzmann'’s
constant, and is the temperature. As shown in E&5), the

0~ ~ o~
*\i _ *
average ofJ, over this ensemble is f dr'G(ay,ap)i 711 f dr'G(az,az)6(I)p(I',1)

1 k T ~
(3= = (118 =dedF’G(q1.qI)0(F)
0B wy
To calculateX,b(Jy), we need the form ob,. The ap- XS(I=T"p(I"b). (121

proximate value ofb, is given in Eq.(90), which for the
weak-coupling case is approximated by ti#e function In Eq. (121), 9(I') meansé that acts onl' variables. We
(27/L) 8(wy— w4) [15]. So we get expandG(q;,q;) nearq; andq;* :

o1 Mmoo AR U .
P i LU AR [CALASRC

XOT)ST—T")p(I' t). (122

deG(ql,ql)l —p(I't)= fdl"dl“ |mZO

Integrating by parts, Eq122) becomes

(Q1:Q1)'a_tp( )= (41,02 )m:0n=0 m!n! a(gy")™ a(qp"

X fdF(Cﬁ—CH*)m(ql—Q1)“~0(F)5(F—F’) p(I'"1). (123
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We call the quantities inside the brackets in EfR3 the J _
“moments” of the order ofm+n. The moments are calcu- j drlG(Ch.CII)&J' dl¢p(T,1)
lated explicitly in Appendix |. They are given by

f dr' (g —a;*)™(d,—qp) ") S —T")

!
7214,
* %

—Z10q;1",
2iv§; bia* di

0

Substituting Eq(124) into Eq. (123), we get

J~
| dreaaizam.

d
ZJ dF’G(Qi,QF)( T

a;

d ~
+JdPGquF%——f;%—ﬂQTMG%U
ad;

+J dF’G(Qi-Q1*)<

X

By changing the integration variable' to I' in the right
hand side of Eq(125 and eliminatingi on both sides, we

have

J~
| dreaapry

49199,

2172 bkq&*QL)F(F’

Jd . Jd )
:J drlG(qlqu)(a_%(lzlql)+ E(—'ZIQT)

2
m:O, n=1 + " (2’)/2 b“q:q@)}jdr”)(r,t)
m=1, n=0 941901 “
(128
m=1, n=1 . . . . .
SinceG(I'4) is an arbitrary test function, we can write Eq.
for all otherm andn. (128 as
(124 (Lrt__a L0
ﬁpl( )= '21&—%% 'Zlﬁm
+2 by(J (T 1),
7; i k>(9qlo7q’l*}p1( 1,0
(129
) (z09)p(I'" 1) where
a1, t)= J dlep(T,1). (130

Equation(129) is our Fokker-Planck equation for the normal
2 modes. This equation is applicable for any initial field con-

) figuration obeying the extensive condition and EIR7). In

the nonextensive case, the diffusion term contairipgan-

ishes, and the equation describes damping of the oscillator
1). (125  Without Brownian motion. For the special case where the
field has the unperturbed Gibbs distribution, using the ap-
proximation(119), we get

- o~ P L9,
— H=~{iz,—q,—izf —
FTLEASE 1(9q1Q1 1 o9 °R

Q2T 7 ]N (Ty.0). (13D
~ pi1tl1,0b).
w1 901097

This is precisely the equation one obtains from the phenom-

'’ PR
:f dFG(Q1'qI)|T%('21Q1)+ E(_'ZI qr) enological Langevin equatiofi01).

! The Fokker-Planck equation for other variables can be

also derived from Eq(129 by changing variables. For ex-

(23/2 bkq’k‘qk) ]B(F,t). (126) ample, the Fokker-Planck equation for the position and mo-
K

+
901997 mentumx, andp;, is given by
= - : _ dn J [ p1 0
Now supposg Ehap(l“,t) is factorized att=0. In other Epl(rl!t): —5—(?—70(1) +a—(mw§><1+7p1)
words, we writep(I",0) as X1\ m P1
2 a2+Dp ” | Iyt 132
p(r0=gy(ay.apl] acacar). 127 2 a2 2 gt 132
5 where

As shown in Appendix J, this factorized form pfenables us 5 _
to write Eq.(126) as M=Mw,/wq,
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2y 2k T principle,.be applied tp more complicat.ed systems than the
Dy=== 2 bk<Jk>~~—~2, one considered here, in order to investigate further the rela-
Mo, K Mw3 tion between noise and dynamics.

We have studied the fluctuations of a particle surrounded
by a field. One can also consider the fluctuations of the field
modes induced by the particle. An interesting result is that
fluctuations of theA-transformed field modes appear even
[The approximate values are applicable for the unperturbedhen the energy of the field is nonextensive. This will be
Gibbs distribution] The Fokker-Planck equation for the ac- discussed elsewhef&2,4qQ.
tion variable J; is given (after integration over the angle The Markovian equations such as the Langevin or
variablea;) by Fokker-Planck equations describe irreversible and stochastic

processes. Rather than viewing these equations as approxi-
d~ d kgT ~ mations of Hamiltonian dynamics, we see them as describing

EP(‘]l’t):|27’,;_Jl(Jl_ = +DJEJ1 p(J1,0), components of dynamics. These components can be identi-

! (134) fied through a change of phase-space variables obtained by
the A transformation. This gives a representation with bro-
where ken time symmetry.
In the non-Markovian equations, the effects of dressing
2vkgT are not separated from irreversililer thermodynamicpro-
D,=2y> by~ —=—. (139  cesses. In our approach, the dressing on the particle is incor-
k wq L . .
porated from the beginning, since we deal with the renormal-
ized particles. This allows us to isolate pure thermodynamic
behavior such as Brownian motion with a white-noise
source. In this sense, we can aim to reformulate thermody-
namics in terms of renormalized particles. This is interesting
in view of recent result§7], which show that the traditional
thermodynamics may not apply for quantum Brownian mo-
tion at low temperatures, due to the non-Markovian character
of quantum noise.

DpzzﬁwZ)le bi(J)~2mykgT. (133

2

Equationg132) and(134) coincide(in the weak-coupling
approximation with the equations for Brownian motion of
an oscillator in an anharmonic lattice derived in R&5].
Equation (134 (in its exact form was first proposed by
Petrosky{33].

Note that Eq.(132) is symmetric with respect to the res-
caled positionx; and momentunp;. The reason is that the
Hamiltonian considered here is symmetric in rescalgednd
p; to begin with. The same is true for the anharmonic lattice
model considered in Ref.35]. In contrast, the Kramers
(Fokker-Planck equation 35,38 derived from the Ornstein- e thank Professor I. Prigogine and Dr. T. Petrosky for
Uhlenbeck phenomenological theory of Brownian motiontheir support and encouragement, as well as for many helpful
[39] is not symmetric, because the Brownian force breaks thgomments and suggestions. We thank also Dr. G. Akguc,
position-momentum symmetry. In spite of the difference, forprofessor I. Antoniou, Professor R. Balescu, Dr. D. Driebe,
the casey<w;, Eq. (132 gives the same solution as the professor M. de Haan, Dr. E. Karpov, C. B. Li, Professor G.
Kramers equation. The solutions of E¢32) can be found in  Nicolis, Professor E. C. G. Sudarshan, Professor S. Tasaki,
Ref. [35]. and C. Ting for helpful comments. We acknowledge the In-
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namic limit, using the star-unitary transformation. We  c1.2001-40002, the National Lottery of Belgium, and the
showed that the average of dressed-particle modes has te,nmunadteFrancaise de Belgique for supporting this

same time evolution as the ensemble average of particlg, k.

modes in the Langevin equatiai0l). Also, the reduced

distribution function for the partiCIe variables exaCtly Obeys APPENDIX A: EXACT TIME EVOLUTION OF PARTICLE

the Fokker-Planck equati0m129), which describes the AND FIELD MODES

damping and diffusion processes. It is remarkable that the

systematic removal of Poincadévergences by analytic con- We consider first the integrable case. The time evolution

tinuation leads to the same structure as that of Gaussia®f the modes (t) can be calculated using the renormalized

white noise. modesQg, which are eigenstates of the Liouville operator.
Since the Gaussian structure of the fluctuations is comingve have

from the resonances, rather than the specific form of the

ACKNOWLEDGMENTS

initial ensemble, our derivation of the Fokker-Planck equa- e‘LHt65= e‘i;stas. (A1)
tion is valid for both Gaussian and non-Gaussian field en- _ _
sembles. The particle mod&); is given @.(47)Jhe field mode®)y

Our method of isolating Poincardivergences can, in are found from the equation,Q,= — ,Qy, which gives
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Q=N{? gt —= (q1+ > = qk/) , Qi) =2 ———Qu(t)=> ———Qu(0)e ¢
(@) K'(#k) @Ok~ @k kKo7' (o) kKo7' (wn)
(A2)
=2 a(0)e "
where X (@)
A2V2 A2VE
k! k Lo
wD)=z-0,- > , (A3) + ————qy(0)e "
K(#k) Z— o K 7" (w))]
2\ /2
) A2V AV, .
e oyt (A4) > 7 k)|2 e (0)e I,
k™ @k — k w T owg— o —IlEe
Ml @) Y Kk k Kk k
(A10)
2y/2 2\/2 -1
A. Vk )\ Vk/ . .
N=| 1+ —= _— . Fort<0, we take the branch with-ie.
7i(wy) K (#k) (0= o)
(A5)
APPENDIX B: RANDOMNESS IN THE FIELD MODES

Note that w=w,+O(1/LL) and alsoN,=1+O(1/L). As We choose our initial condition with the forrt41). In
long asL is finite all the denominators are nonvanishing, andc|assical mechanicsj;;=0,(0) can be determined exactly
there are no resonances. sinceq,q is a function of the initial position and momentum
We write the linear relations between the dressed and barg the particle. For the modeg,, we need more care. Let us

modes as first write g in terms of the action and angle variables,

6522 CsrQr qs:Z Crsar- (AB) qko= Jkoeiiako- (B1)

Then, using Eq(Al), we get the coefficient$,(t) in the With the ensemblé41), we have

equationgs(t) ==, f(t)q,(0) as . 0
lim (Jyo)~O(L") (B2)
— L—o
fs,(t)=2 crroeterick, (A7)

' in the thermodynamic limit. For example, for an unperturbed

In the nonintegrable case resonances apfssss Sec. Y Gibbs thermal distribution of the field modes, we have

and if we insist on keeping the renormalized modes as usudPko) =keT/wi [see Eq(ES)]. .

canonical variables, then the particle modes dissappear into For almost all phase points{Js, ... dio, ...,

the continuum of field modeéve can, however, introduce %10: - - - ko - -} out of the ensemble, any two different

the Gamow modes of Sec. V, which are noncanopical anglesayq and ay. o have no correlation. In other words, the

Keeping canonical modes, the Hamiltonian is represented a&duence of anglelgy o} is completely random for almost

[2,15,29 all cases. This property allows the existence of the thermo-
dynamic limit [18]. Indeed, if ayq is uniformly distributed
over [—, 7] and the sequence of anglésy o} is com-

— O* O
H_zk: @ Q Qi (A8) pletely random, then the term
in the continuous limit. The renormalized field modes are AV oS AV e o o
given by —Ok€ K= Jyoe KTk
K 7" (wy) K 7" (wy)
B3
~ AV AV, ©3)
Q=+t — |+ ————aw|, (A9 o -
7" (wy) K o~ opFle in Eq. (A10) is O(L%). This is so because the summation is

taken over a sequence complex numbers with random phases
where € is a positive infinitesimal quantity. There are two and hence it is proportional to the square root of the number
branches, corresponding to analytical continuation to thef modes, which in turn is proportional th. Since V
lower or upper half planes ab,. Fort>0, and given the ~L %2 Eq.(B3) is O(LY. It shows a very irregular time
initial condition Eq.(41), it is convenient to take the branch evolution as the number of modes increases.
with —ie, since this allows us to separate the exponential Note that if ¢, g was a smooth function d, then for the
decay of the particle modes for-0 directly. We get first term of Eq.(A10), we would have in the limit. —
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AV,
K 7' (o)

\v )
—k‘ /Jkoeflako

7" (wy)

Vs fdk Mk et
-\ 5 —VJko € )
2 7" (wy)

(B4)

L 27

Qko= o7 L =

and since the integral 9(1), this expression would diverge

asO(4L).

APPENDIX C: DERIVATION OF THE NON-MARKOVIAN
FOKKER-PLANCK EQUATION

From the Liouville equation, we have

J
f er(rl)Ep(r,t)=—if dTG(T ) Lup(T,1)

=2 2 GuaMmi(1),  (CD
m=0 n=0
where

Ma0=—1 [ drai"aiLup(To. (€2

Using Eq.(30), we have
M= | dP{iL W0 (01 a0 T}p(T,0). (€3
Sincely is a differential operator, we have

iLn[at (D] ax(D]"=mlaT (D] *[aa()]"L a7 (1)
+n[a7 (H]Mar(H]" HLwas (D).

(C4
From Egs.(31) and(34), we have
iLyat () =iz7 (Hay (1) +R*(1),
iLpoa(t)=—iza(t) s () + R(). (CH
Inserting Eqs(C4) and(C5) in Eq. (C3), we get
Minr(1) = M0+ MR4(0), (C6)

where

WA= [ arlizt (om=iz,(on]
X[aF (O] (0]p(T",0)

= f dI'[iz3 (t)m—iz,(t)n]a3 "qip(T 1),

(C7)

and
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MR (D) =MFx)+ MR, (C8)

M) = f dl' m[ g} (1) 1™ 9D ]"R* () p(T",0),

MEZD = [ drnlas 0] Mau(]" R)p(I0).

Now we evaluateM (1) in Eq. (C8). Using Eq.(36), we
have

MRt = f dr m[qf(t)]mfl[qm)]”Ek he (D ai p(I",0).
(C9)
Then, using Eq(32), we obtain

m—1
Mﬁ'&(t):f dr m{ffl(t)QT+Ep ffp(t)q;} [fll(t)ql

+2 flp’(t)qp’} Ek hi(Dagp(I',0).  (C10
p/

Abbreviatingf ,=f,,(t), h(t)=h, and using binomial ex-
pansions, we get

m—1 n
vgio-[ars >
a=0

b=0
xm[fygf 1™t of,q,]" P

% E E f;l...f;ah;aﬂfpi...

P1 - Pa+1 pi...pé

(m—=1)! n!
(m—1-a)!a! (n—b)!b!

X fpkr’q"gl. . .q’r;aq;ﬁlqpi. . 'Qpl’)P(F,O),
(C1)

where we changed the variabketo p,.,. Due to the as-
sumed form of the field distribution in E¢41), only expec-
tation values of observables independent of the angjesf
the field modes are nonzefm other words, eaclqur field
mode must be multiplied by its complex conjugaa|l;§>T with

pj =pi). Thus, in Eq(C11), we must havéo=a+1 and we
get (@a+1)! possible parings

min(m—1,n-1)

>

a=0

Rl en (m—=1)!
an(t)—J dr (m—1-—a)'al
n!
“h—1-a)l(a+1)

pmifigr]™ e

X[fiqq]" 72 X

2 2
p1---P |fp1| .”|fpa h*

Pa+1 Pa+1
a+1

X(a+1)lgp dp, -+ dp dp Ay, A, ,p(1,0).
(C12)
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Note that due to the volume dependence of the coefficients 9

f,~O(1WL) and h,~1/\L [which follows from Eq.

j dIG(I'y)—p(11)

(A10)], we can neglect the cases where two or more of the

wave numbers are repeated, e+~ p; for i#j. Indeed,
these cases give contributions of the orde©Ogfl/L) within
the summations in E4C12). Canceling &+ 1)! and writing
k=ps.1 andn!'=n(n—1)!, we get

min(m—1,n—1)

Mf;',%(t)=mnf ar - >

a=0

(m—=21)!
(m—1-a)'lal

(n—=1)!
(n—1-a)!

[ffaf]™ *2fyq]" 2
Xplgpa |fp1|2' e |fpa|ZQ’51qp1' : 'q;aqpa

x 2 hicfuc ai(T",0). (€13

Applying the reverse steps from Eq€12) to (C10), we get

MR4(t) =mn f drrat (O] gyt ]t
XEk hi (1) f1(t) g qy p(T',0)
—mn f dr (gt (0] ax()]"?

><Ek hi () f1(1) (E q) p(T,0)+ O(11L),

(C14

where due to the factorization property E41), we can take
independently the average

(@ta=(0- [ draapro (19

(a similar argument is given in Appendiy. Bringing the
time dependence back g we get

MEAD =mn [ o (a1 (0,1 S b O

X(J)p(T 1), (C16

For the second term in Eq(C8), we have MRA(t)
=[MRIt)]*. Putting everything together in E¢C1) with

H (9 H— & *
:J dFG(Fl)[|21(t)(?_ql%_'21(t)EQ1
{92
+D(1) *}p(r,t), (C1y
g.9d;
where
D(t):}k) [hi (1) f () +c.c](Jy). (C18)

Since G(I';) is an arbitrary test function, we come to the
non-Markovian equatior{42) for the reduced distribution
function p,. Replacing the explicit form dfi (t), we obtain
Eq. (43) as well.

APPENDIX D: MARKOVIAN APPROXIMATION

Phenomenological equations may be obtained from dy-
namics using the so-called Markovian approximationthe
A2t approximation studied by Van Hove and others Refs.
[37,41-43), where memory effects are neglectete also
[44—46). This approximation is valid if we take the continu-
ous spectrum limitL—o (with Poincareresonances for
weak coupling and for time scales where the relaxation pro-
cess dominates over dressing procesdhs particle-bath
correlations are negligiblg35,4]).

In this appendix, we consider the Markovian approxima-
tion of the dynamical evolution of the bare-particle modes.
We will write the weak-coupling approximation of the coef-
ficients f,4(t) and fq(t), which will give the Markovian
approximation of Eqs(34) and (42).

We start with Eq.(A10), for t>0. We approximate for
weak couplingh <1,

1 1

7 (w) @7

(D1

We then separate the pole contributionagt=2z, and the
branch cut contribution from each term. The pole contribu-
tion gives the exponential decaying part and the cut contri-
bution gives classical Zeno effect and nonexponential behav-
ior [22]. Here, we will only consider the pole contributions
in Eq. (A10), which amounts to the Markovian approxima-
tion. Taking the pole contribution ab,=2z; in the last two
terms of Eq.(A10), we get

AV

Wy—

() ~qy(0)e 1+ X ——gy(0)e 1
k 1

AV
Wy 23

—2k qi(0)e~ . (D2)

integration by parts and a few straightforward manipulations,

we obtain

Therefore, we have
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fll(t)me_izlt’ For the normalized thermal field ensemble, we have
K ra—iopt_ a—izgt keT
fix [e” 'K —e 1] (D3) (9koGk’0) = Bicke o (D10
This leads to Using this result and going to the continuous limit, we obtain
from Eq. (D9)
Zl(t)wzla
3\/ kBT (Fors
R(t)~ —|Z AV, e~ “kg(0). (D4) (g1, (t+ 7)qy, (1)~ dW _lez o

i i ir* i
Fort<0, we can repeat the same procedure, except that now —e atgletrn) _giz; (trrg-iot

we choose thetrie branch in Eq(A9). Then, we obtain the

following approximate equation +e217e” M), (D11
qu(t)~—izy0 (1) +R(1), t>0, For y<w,, the integrand is sharply peaked arounef ;.
_ We separate the pole and the cut contributions to the integral,
q.(t)~—iziq.(t) +R(t), t<O, (D5)  rewriting Eq.(D11) as

which has a Langevin form. This equation is expressed in (a7, (t+ 1)z (1)) ~(aF, (t+ 7 A1 (1)) pote

two branches, one fot>0 and the other fot<0. The

change—iz,;= —iz corresponds to the changg=—y, +(a1:(t+ 79y (D)) cur, (D12

since z,=w;—i7y. Taken separately, each branch breaks
time-reversal invariance, while as a whole time-reversal inwhere
variance is kepi{note that in the integrable case, we have

y=0 and there is no splitting into two brancheSomparing (93, (t+7) 01, (1)) pole
Eq. (D5) with Eq. (101) we identifyz, =z,. Furthermore, the "2 KoT
term R(t) behaves as the white-noise sourieét) in the :f do 2@ 2 (gler— g intglotn
sense that in the pole approximation, the autocorrelation e |o—zy)? @
functions of the variables; and q; coincide. Indeed, the 2 (7)ot 1 2% r 2t
“noise” term R(t) in Eq. (D4) has the same Gaussian prop- —entteTlot e, (D13
erty (103 as the noisd(t), provided we replace noise av- .
erages by averages with ensembles of the fodd) [see (1 (t+ 7)1, (1)) cut
discussion below Eq.C11)]. Then, defining 5 2
0 A U, kBT . .
. izt :_J dw ( IwT e—lzltelw(t+r)
d1a(t)=0q1(0)e™ "1, (D6) e o—zy? @
) t o _ Azt D a—iwt | aizF ra— 29t
qlr(t)EeflzltJ dtrR(t/)elzlt €l € +e“i’e ) (D14)
0
Usin
N g
=2 ——[e '»d—e Mq0), (D7)
kK 02 keT kgT
v %UZ) 1 _%_l
and following the same steps as in E¢E06)—(110), we get “ ! ZT  wq
<q qlr(t)>_| 5k|<q1r qll‘(t)> (D8) ,}/%ﬂ_)\zvzz;l’ (D15)

In general, we havéwith g,,=0q,(0)]
the pole contributions ab=2z,,w=27 give

k i Lk
<QIr(t+T)qlr(t)>% Ek: — qto(elwk(tJrT)_eIZl(Hr)) .
k™ B )
1 (@5t 7)1 (D)pore~ =— €7 (1—e 2. (D16)
w1
)\VI qlo(efiwﬁ_efizlt)

x 2

I W~

The cut part involves the tail of the Lorentzian distribution
(D9)  1o—zi?=1[(0—w1)%+ ¥?]. It gives
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<q’]\:r(t+ T)er(“)cut

= A%, kgT
f dw —
0 |w+Zl|2 w

j dI'Jexp(— BHg)

(= f Al J = +0(\2)

(efiw‘r_ e*izl’[efiw(’ﬁr 7)

f dT" exp(— BHo)

_ aZF () piot Az ra— 29t ©
gz1{ttngloty glz; o= 271 (D17) f 33 expl — By .
0
- = +O(\%)=—-—+0(\?),
In the weak-coupling casey(<w;), the cut contribution is f dJexp — Bwdy) Box
A . K kJk
much smaller than the pole contribution. Replacing the result 0
(D16) in Eq. (D8) with 7=0, we obtain the same correlation (E5)
Eq. (111 obtained from the phenomenological Langevin
equation.
We have also J dr gy g (N2V2/2)exp(— BHo)
(AK k) = +0O(\%)
29ksT f dI' exp(— BHy)
D(t)~ ———. (D18
w3
=A%V, Vo +0O(\%). (E6)

Bwy Bwy Bwy,
Hence, we recover the Markovian Fokker-Planck equation
(131) with z,=2z,. Noting thatV,~L %2 andX,,~O(L), we obtain the result
(81). One can check as well that terms of higher ordex\h
retain the same volume dependences.
APPENDIX E: PROOF OF EQ. (81) For an ensemble of the form E¢1), we have(q; qy:)

In this appendix, we show by perturbation expansion thatzo’ while (J)~O(1). This is a special case of E(B1).

Eq. (81) is satisfied for the equilibrium Gibbs ensemble. The
same relation is valid for the class of ensembigsnerally APPENDIX F: A AND PRESERVATION OF THE
nonequilibrium ensemblgshaving & singularities in the MEASURE

wave numbers, of which the Gibbs ensembile is a special case

From the requiremer(®) in the Introduction reserves
[35,13,14. The Gibbs ensemble is given by ; ) AP

the measure of phase space. This means that

p%%=C exp — BH), (ED f dl'Ap=1, (FD
whereC is a normalization constant, such that

f dI'ATp=1, (F2

f dl p®{T)=1. (2  for any normalized ensemble. The first equality is easily
shown, since it may be written as
In the perturbation expansion, we have f dl'(AT1)p=1, (F3)
. 1., where 1 is the unit operator. Sindg can be expressed as a
pi=Cexp—BHo)| L+AV+ 5rAVa+--- | (E3)  perturbation expansion,

AT=1+0(\Ly), (F4)
Due to the angle integrations, only diagonal monomials are
nonzero andL,1=0, we conclude thak "1=1, from which Eq(F1)
follows. Similarly, one can show the second equalfp).
So, Eq.(F2) should be satisfied for the specificwe have

&M, n constructed in Sec. VI. This condition will allow us to derive
J dFH A rqrre)(p(_'B'_lo)“l_r[ dm.n- B ihe relation(88). Consider the ensemble

p=C1q7 q1exp(—J/Jp), (F95)
Considering the explicit form of the potentisd, we then
have whereC, is the normalization factor given by
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-1 sic condition. An alternative derivation, presented in Appen-
Cs:“ dl'gs gsexp(— /o) | (F6)  dix A of Ref. [16], started with the analog of E¢F13), as a
postulate. All the derivations give the same re$88). Note
with that a condition different fromn+r* =1 would not allow us
to express\ T'q} g, as a combination of Gamow modes only,
J=E qtq F7) and it would lead to energy fluctuations different from the
S s inverse lifetime in the quantum case, which would be un-
physical.
andJ, a constant that makes the argument of the exponential The preservation of the measure can be proven for more
dimensionless. The factor exp{/Jy) ensures the existence general ensembles involving monomials of particle modes,
of a finite norm ofp (see the Segal-Bargmann representationwhich we have considered in Sec. VI. Indeed, from the rela-
in Refs.[47,22). The total action] is invariant of motion, tion 3,cjc,=—1 (see Ref[15]), we have[see Eqs(F12
because we haveyJ=0 andL,J=0. Using Eq.(F4), we  and(87)]
get

ATI=3, Alexp(—J/3g)=exp(—J/Jp). (F8) S be=1. (F14)
K
The operatot_y, is a differential operator. Applying the chain

rule of differentiation and Eq(F8), we conclude that Using this relation as well as the expressi®i), one can

*mLn

ATgrgrexp—3/30) = (ATq* q)exp( —I/dg).  (F9) _sho_vv that foro=C,,a7 "'d1exp(—JI/Jp) with C,,, @ normal-
ization constant, we have

Inserting the ensemble E@F5) in Eq. (F2) and using Eq.
(86), we get
f dFATp=dep=5mn. (F15

exp(—J/Jp)

le dF|N1|[QIQ1+)\2; (rci+c.c)ai gy
The proof (which we will omit here uses the relation
=1, (F10  [dI'Q*™Q%exp(—J/Jy)=0. This follows from the fact that

both Q "QY and exp{J/J) are eigenfunctions of ,; with

where the off-diagonal terms such @isqy appearing in the different eigenvalues, which implies their orthogonality.

productQ?* Q, in Eq. (86) vanish due to the integration over

angles in phase space. We can write &0 as
APPENDIX G: PROOF OF ANALYTICITY OF A

CiIN¢|| CT TN (red+ c.c.)Ckl} =1. (F1)) In this appendix, we show that E¢91) removes all the
K nonanalytic|c,|? terms, replacing them by,=rc2+c.c.
; First, we derive recursive formulas to calculatéq: ™q .
SinceC,=C, for anyk [see Eq.(F6)], Eqg. (F10 leads to ’ . 1
! 1k yki a(Fe), Ea. (F10 We start with Eq.(921) for m=n:
INg|[ 1+A2D (re2+c.c)|=1. (F12 N
K m!n! =l
A'lgiMal=2, "R (6D

- —DI(n=1N11 et
This equation plus the condition+r* =1 vyield the result =o (m=Dt(n=hHlt

(88). With this result, we can write
o 5 [the n>m case can be calculated by taking the complex
ATafq;=Q@Q%Q,;+PO(rQ*¥Q,+c.c), (F13  conjugate of Eq(G1)]. We have as well

whereP© is the projector to angle-independent monomials n
(such asg¥qs) and Q(°)=1f P©). This shows that the Afgrmiign=3 — 0} n
transformed product of particle the modes can be simply =o (M+1-Dli(n=N!
written as a combination of the renormalized particle modes (G2
(i.e., Gamow modes

The derivation followed here is similar to the derivation For|>0, we have the identity
followed in Ref.[15], where we used th& transformation to
define dressed unstable states in quantum mechanics. The
only difference is that in Refl15] the relationr +r* =1 was = + )
derived from the requirement that the dressed unstable state (MT1—DHT (m=DI = (m+1-1)I(1—1)!
has an energy fluctuation of the order of the inverse lifetime. (G3)
This fluctuation is a quantum effect. Here, we are dealing
with classical mechanics, so we postulater* =1 as a ba- Inserting this in Eq(G2), we get

(m+1)!n! ~*m+1fl’“nleI_

(m+1)! m! m!
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*m+1 n

N *m“Qﬁz [m

m!
+(m+1—|)!(|—1)!}

n!

*m+1 IANn—1IvI
( sy QY. (GY
The first term plus the second term give
(ATgr Mg ATay (G5)

(Note thatATq¥ =Q%.) The third term may be written as

(with I'=1-1)
n—-1
m! n(n—1)! “*m—l”Qn—I’—lYI’+1
o (M=) (n—1"=1)1 -t !
=nYATqiMqyt. (G6)
Therefore,
q>J\:m+l n__ (AT *m n)ATq1+nYATquq2 1
(m=n). (G7)
For m>n we have, from Eq(G1),
" ml(n+1)!
*xmn+1__ *m—IA_n+1-1yI
Aai"el™ =2 i QY
(G8)
Using Eq.(G3), we get
*mn+1_ NxmAn+1 m! *m—n—1y/n+1
n
q q Q Ql + (m_n_l)lQ Y
“om n!
2 =t =
n!
AxMm—IAN+1-1\/I
+(n+1—|)!(|—1)!} QY
(G9)
Adding the first and the third terms, we get
(ATqFMaDA gy . (G10

(Note thatA Tq;=Q;.) Adding the second and fourth terms,
we get(with |'=1-1)

n!
DY (n=1")r")!
=mYATqr™ 'q].

m(m—1)!

_|’

I"=1Xn—1"\/I"+1
( *m QII Y +
I"=0

(G1)

Therefore,
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*m n+1

A'qs =(ATqfmqD)ATg,+mYATgE™ 1q]

(m>n). (G12
EquationgG7) and(G12) plus their complex conjugates per-
mit one to construct Tq} Mg} recursively.
Now we prove the analyticity oA Tq¥ Mg} atA=0 from
the recursive relations. In the recursive relation, we show
that if the lower order terms im andn such asA Tg* mq7,
ATgi™gi~t, and ATgi™ !q]"! are analytic, then the
higher order terms\"gq*™*q} and A"q} Mg} are also ana-
Iytic Then from mathematical induction, the analyticity of
ATq¥™q! is proved for generai andn (the m<n case can
be shown in the same wayin Eq. (G7),

ATgi ™ al=(ATg* gD A g +nYATgr Mg
= n m!n! ~*m—|6n—|Y| Q*
<o (m=Dl(n—Hrir=t 1 1
_ m!(n—1)!
+nY Z (m—|)|(n 1_|)|||

x(g;m"(gg‘l"v'). (G13

Suppose that the quantities inside large parenthesis are ana-
lytic in . The additional nonanalytic terms appear whenever

additional product®?} Q, appear. Since

Q:=N7? (G14

Q1+)\; cqu),

eachQ? Q, produces 4c,|? term, which is nonanalytic i.
Let us denote the nonanalytic part of a functibf\) as
Fn(f(\)). The nonanalytic part in the first term in the right

hand side of Eq(G13) is made by the additione@*l* multi-

plied by Q7 ', which generates—1 terms|c,|*:
S min! A*xm—IAn—Iyl | A*
Z m_Din—nHmer Q1 Y01
n mint A*xm—I=n—1-1y/I
2 - 9l Yi(n=HN?N|
X; |l 20 ax
m!n!

-5

AxM—IAN—1—-1yIy 2
moDIn- - Q1 YNNG

><§kl |cil 20 . (G15

The nonanalytic part in the second term in the right hand side
of Eq. (G13 is coming fromY. Since

056117-21



S. KIM AND G. ORDONEZ

Y= E kaka—E NN |(=[e2+ref+r* e ) agax,

(G16)
the nonanalytic functiofic,|? appears inside.
n-1 mi(n—1)!
A*x M= n—1-1yI|
FrinY 2 oy Q1 Y

min!
m—1)!(n—1-1I)!al

n—-1
= —N2Ny| X [edParac >
X i=o (

XQ*m IQ*n 1- IYI (Gl?)
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APPENDIX H: CALCULATION OF THE NOISE
CONSTANT R,

In this appendix, we determine the noise constnt We
assume that the noi¥t) comes from the thermal bath with
temperaturd. In this case, we expect that the system reaches
thermal equilibrium fort—oo. Furthermore, from the equi-
partition theorem, we expect that

1. <p1>eq 1
2mw1< 1>eq W EkBT, (Hl)

wherekg is Boltzmann’s constant. Substituting the relations

The nonanalytic parts from the first term and second term in

Eqg. (G13 exactly cancels out. So, the left hand side of Eq.

(G13) is analytic in\. Note that terms of the fornc,|?"

with n>1 give O(1/L) contributions and thus they are neg-

ligible.

Next, we show that the left hand side of E@12) is
analytic in\. The nonanalytic part of the first term in the

right hand side of Eq(G12) is
Fn[(Atg: Mg ATg,]

#ol| 3, e e v
:Zn —|Tl(:'—|)m~*mlrT'Y'(m_')"z'Nl'
<3 Jefata
Zn —|—m;1n(!n—|)!|!~*ml1~2'Y"‘Z|Nl|
x 2 led?ak a. (G189

The nonanalytic part of the second term in the right hand

side of Eq.(G12) is

FnfmYATqi™ *q]

n

=—m)\2|N1|§k: |Ck|2q:qk;) (m ETI)lgz!nn_!U”!
X QM1
" min!
:_)\2|N1|Ek |Ck|2Q§Qk|:2()(m —)i(n—1!

xQFm QLY (G19

Again, the nonanalytic parts of the first and second terms of
Eq. (G12 exactly cancel out. The right hand side of Eq.
(G12 is analytic inA. Therefore, from the mathematical

induction ATg¥ MqY is analytic in\.

N 1 . N
xi()=\/ ——=Ta:()+ai(v],
2mp(1)1

lam-ao]  (H)

pa(t)=—i
into Eq. (H1), we get the conditions
(AZ(1)eq+ (AT (1)) eq=0, (H3)

®1(q% (1)G1(1))eq=KaT- (H4)

On the other hand, we have

(0% (0)92(0))eq= lIM[{ATa(1) Q1a()) +(Q% (1)1, (1))]

t—o

= lim (g, (1)qy, (1)), (HS)

t—o

<afr(t)alr(t)>
- (t[t R R - -
:<e—2yt J f dtldtzR(tl)R*(tz)xe'21‘1—121t2>>
0JO

. [t . . R%1- —2
=e*27tf dt1R§e27‘1—°( Ae ). (H6)
0 2y

Substituting this in Eq(H4), we get

L 2vkgT
RI=780 (H7)
w1

APPENDIX I: CALCULATION OF THE MOMENTS

In this appendix, we calculate the moments in E4).

We have
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f dr'(a7 —a;*)™(ar—qy) "B 8T

ZJdT[W(F)(Q’I 9:")"(d:—qp)"T* &I~

—J dI[(AD) LA™ (9 —a*)™(a:—a7)"]
Xo(I'=T"),

where we used the relatlolfr

I=(AN " LyAT(gf —a1*)™(a;—ap)"

d .
—i m(A*)‘le'LHtA*(q’{ —01*)™(a1—a1) "o

LH and L*—_LH .
guantity inside the brackets in E1) (which we calll) is
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Substituting Eq(14) into Eq. (I1) and integrating withs(I"
—I'"), we get Eq.(124).

) APPENDIX J: FACTORIZATION PROPERTY

We show the factorization of E¢128) whenp(I",0) has
the form

(11)

The

p(I',0=g,(q} ,q1>1'k[ 9k(aF .0 31

In Eq. (128), by integrating by parts, we can write

2
2 bidip(T,t)

1

J dI'G(qy, ql)

1

mnol . . m!n! d
— ’ EEPAN| -
I;O JZO( ql )( ql) (m—I)'(n—j)'I'J'( Idt) de‘& G(qlaql)z kakat)
X(AT) "t WA TG gl o (12) i
G , b e p(,0).
Using Eq.(115, we have ( (G1.42) )Ek Kk p(1.0)
m o n J2
, m!n! d
= - —qy)! — | -
22 %) (m—l)!(n—J)!I!J!( dt) Let us expand
><min(m—l,n—l) (m—I)!(n—I)!
o (mrlmarne e  GGa)=3 Gl O3
1 mn
Xei((mfl)zf7(nfj)z1)tq-icmflfaqgfjfaYa(eZyt_1)a|t:0' 49,991 m,n
(13) We have
Because of theg?”'— 1) term, the only nonvanishing terms
in Eq. (I3) att=0 are fora=0 ora=1. So the above equa- xm.n —iot~
tion becomes f dl'a; ql; biJe ™ p(T',0)
m n min! d J‘ it T 2 *_
= — ' i = | dI'|(e”'"Tqfqi "2, bJi| p(I',0. (I9
2 2, (' A I)!(n—j)!< 'dt) I
m-1n-1 .
X(e4 )™ (e )" Tiso+ 2 X (—apt) Since
=0 j=0
. m!n! d
PN i Lo, bdi=0, Ly> bJ=0(1AL) (J5
X0 i me —1)!(n—j—1)!( 'dt) oq Pk v Pkek

% ei(zl—z’{)t(eiz’{tqalc )m—|—1(e—iz1tq1)n—j -1
XY(e*"'=1)|i=0

. d P ' — !
= —Ia)(e'zltq,{_%*)m(e 10— a1) -0

dt) mnY(l_e—Zyt)(eiZith _qi*)m—l

.

i -1
X (e "1'q— )" Hizo-

and A is expressed in terms df, and Ly, #=ALyA !
treats3,b,Jy like constant. Neglectin®(1/\L) terms, we

can write

J dfq’{’“qﬁk) kakefibt;(F,O)

mxn

101 (J6)

1*p(T,0).

(14) :f ng bl (67 Tg
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In Eq. (36, [(e"")TqMg? "]* can be written agsee Eq.

(119]
[(e—iét)TqTqin *=(AT)_1(eiLHtATquq2
min(m,n)
m!n! . B
= 2 monimonme T
Xqu—lqg—IYl(eZyt_l)ll (37)
Since
| |
E bk‘]k(E bk‘]k) :E bk‘]k< 2 bk"]k’ +O(1/L),
k k k K' £k
(J8

we can write
Ek‘, b Jl (e TqTgt ”]*=§kl bl (e~ TaTat "IF_

+O(1L). J9

In Eq.(J9, [ ];_x means that we exclude ttk¢h field mode.

With Eqg. (J9 and neglectingO(1/L) terms, Eq.(J6) be-
comes

f dF; b (e ™) 'qT'as "*H(T.0)
=2 J drbJid (e ) TqTas "7 p(I",0)
=3 [ droadte ™ agem g Il gur
=2 J dlybydi @i J dr_d(e” ™) 'aTas "I,

xgy(Ty) [T ge(Te). (J10
k' #k

PHYSICAL REVIEW E67, 056117 (2003

For anyk, we have

J dlg(I') =1. (J1y

Then we can write

| aroa@iro= | arbagu Il aro=bia.
o1

f de—k[(e_ibt)TqTq’in]?—kgl(rl)H i (T'r)

k' #k

:f dr[(e—iNat)‘rquann]?_kgl(rl)H O (I'yr)
k’

- f drg;™qle” "p(T,0), (313
and Eq.(J10 can be written as
[ drS bt ™ apemar o
=§k‘, bi(Ji) f drqs Mgfe” "p(I',0)
=Ek bk<Jk>f drg; ™aip(T,b). (J14

This equation, together with Eq&l2) and(J3), leads to Eq.
(129).
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