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Star-unitary transformations: From dynamics to irreversibility and stochastic behavior
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We consider a simple model of a classical harmonic oscillator coupled to a field. In standard approaches,
Langevin-type equations forbare particles are derived from Hamiltonian dynamics. These equations contain
memory terms and are time-reversal invariant. In contrast, the phenomenological Langevin equations have no
memory terms~they are Markovian equations! and give a time-evolution split in two branches~semigroups!,
each of which breaks time symmetry. A standard approach to bridge dynamics with phenomenology is to
consider the Markovian approximation of the former. In this paper, we present a formulation in terms of
dressedparticles, which gives exact Markovian equations. We formulate dressed particles for Poincare´ nonin-
tegrable systems, through an invertible transformation operatorL introduced by Prigogine and co-workers.L
is obtained by an extension of the canonical~unitary! transformation operatorU that eliminates interactions for
integrable systems. Our extension is based on the removal of divergences due to Poincare´ resonances, which
breaks time symmetry. The unitarity ofU is extended to ‘‘star unitarity’’ forL. We show thatL-transformed
variables have the same time evolution as stochastic variables obeying Langevin equations, and that
L-transformed distribution functions satisfy exact Fokker-Planck equations. The effects of Gaussian white
noise are obtained by the nondistributive property ofL with respect to products of dynamical variables.
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I. INTRODUCTION

In classical physics the basic laws are time reversible
we know the Hamiltonian, then we get Hamilton’s equatio
of motion which describe the time evolution of the system
a time reversible, deterministic way. On the other hand,
see time irreversibility and stochastic behavior everywhe
How to bridge the gap between theory and reality has b
the subject of many discussions.

The main problem is how to extract irreversibility an
stochasticity out of Hamilton’s equations of motion. Th
will be the subject of this paper. Our approach is an ext
sion of canonical transformations to define dressed parti
or quasiparticles@1#.

We consider Hamiltonians that can be written as

H5H01lV. ~1!

The first termH0 describes a set of noninteracting ‘‘bare
units, while the secondlV describes their interactions (l is
a dimensionless coupling constant!. Specifically, we will
consider the one-dimensional Friedrichs model@2#, describ-
ing a classical harmonic oscillator~bare particle! coupled to
an infinite set of bare field modes~heat bath!. This model is
closely related to the Caldeira-Leggett model@3#, which has
been extensively used to study quantum Brownian mo
@4–9#.

In general, bare particles follow a complicated motio
due to their interactions. In order to gain a physical insig
into their behavior, and also to simplify the equations
motion, one can introduce a change of phase-space varia
~a canonical transformation!. The new variables describ
renormalized entities or quasiparticles. After solving t
equations for quasiparticles, one may apply the inverse
nonical transformation to get the solutions of the origin
1063-651X/2003/67~5!/056117~25!/$20.00 67 0561
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equations of motion. For the Friedrichs model, the quasip
ticle consists of the original particle surrounded by a ‘‘dre
ing’’ cloud of field modes.

For integrable systems, one can construct transformat
U that completely eliminate the interactions. They bring us
a description in terms of free quasiparticles. This is read
seen starting with the Liouville equation

i
]

]t
r5LHr, ~2!

where LH[ i $H, % is the Poisson bracket with the Hami
tonian. Similar to Eq.~1!, the Liouvillian is written as a free
term plus interactionLH5L01lLV . Applying U on both
sides of the Liouville equation, we get

i
]

]t
Ur5ULHU21Ur,

⇒ i
]

]t
r̄5L̄0r̄, ~3!

where

r̄5Ur, L̄05ULHU21. ~4!

The transformationU is constructed in such a way thatL̄0
has the same form as the noninteracting Liouvillian, w
renormalized frequencies. Equation~3! gives the time evolu-
tion of the free dressed particles.

If U can be constructed through a perturbation expans
in l, we say the system is integrable in the sense of Po
caré. For these systems, we can keep a one-to-one corres
dence between the original variables and the transform
variables. With a suitably defined inner product between
©2003 The American Physical Society17-1
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S. KIM AND G. ORDONEZ PHYSICAL REVIEW E67, 056117 ~2003!
namical variables and ensembles, we can define the Her
ian conjugate transformationU†. One then finds thatU is
unitary: U†5U21. The transformationU thus preserves the
time reversibility of the original Liouville equation.

Now, if all systems were integrable in Poincare´’s sense,
this would mean that all the phenomena we observe in na
are equivalent to free motion. This would be hard to rec
cile with the existence of dissipative phenomena, which
essential for the appearance of bifurcations and s
organization@10#. However, for most systems one cann
constructU by perturbation expansions, due to the appe
ance of resonances. Resonances give vanishing denomin
leading to divergences. These divergences were discov
by Poincare´, so we will refer to them as Poincare´ diver-
gences@hereafter, whenever we speak of integrability or no
integrability, it will be meant in Poincare´’s sense#.

It is precisely for Poincare´’s nonintegrable systems tha
we see irreversible and stochastic behavior, such as Bro
ian motion. One of the main developments of Prigogine a
co-workers has been to show that one can systematic
eliminate the Poincare´ divergences by regularization of de
nominators@11–15#. As a result of this regularization tim
symmetry is broken and one obtains a new type of trans
mationL that replacesU. This gives a quasiparticle descrip
tion leading to stochastic or kinetic equations, such as
classical Langevin or Fokker-Planck equations, respectiv
To see this, we operateL on the Liouville equation

i
]

]t
Lr5LLHL21Lr,

⇒ i
]

]t
r̃5 ũ r̃, ~5!

where

r̃5Lr, ũ5LLHL21. ~6!

ũ is now a collision operator as used in kinetic theory. If w
integrate out the field variables, this becomes, e.g., an e
Fokker-Planck operator. Through theL transformation, we
can also describe dressed unstable states in quantum me
ics @15,16#. One can define as well anH function that has
strict monotonic behavior@11#.

For the Friedrichs model, we have both integrable a
nonintegrable cases, depending on whether the spectru
the field modes is discrete~finite volume L with periodic
boundaries! or continuous (L→`). In the first case, we hav
cyclic ~although complicated! motion of the particle, as the
field comes back to the particle through the periodic bou
aries. In the second case, the field does not come bac
Poincare´ resonance emerges, since the energy of the par
is embedded inside the continuous spectrum. The emis
of the field from the particle leads to radiation dampin
Conversely, the particle is excited when it absorbs the fie

To understand the breaking of time symmetry, we n
that when there are Poincare´ resonances, i.e., in the limitL
→`, the solutions of Hamilton’s equations for the bare p
ticle contain a dominant decaying component oriented ei
05611
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towards the future or towards the past, or both, depending
the initial conditions. Taking the well-known Markovian ap
proximation, one finds that the equation of motion for t
bare particle is split into two branches, one fort.0 and
another fort,0. As a whole the time-reversal invariance
the motion is kept, but if we pick either branch, time sym
metry is broken. To obtain this splitting into two semigrou
for the bare particle we have to make approximations.
contrast, in terms of the dressed particle defined throughL,
this is an exact property. The analytic continuation ofU can
be made to either the upper or lower complex frequen
planes, giving exact Markovian equations that generate
t,0 or t.0 semigroups, respectively. Once we fix the an
lytic continuation, time symmetry is broken.

The L-transformed functions involve generalized fun
tions, or distributions~examples are the ‘‘Gamow modes
presented in Sec. V!. If the initial unperturbed functions
formed a Hilbert space, the transformed functions are
more in this Hilbert space. In its transformed domain,LH

behaves as the dissipative collision operatorũ with complex
eigenvalues@13,14#.

In contrast toU, L is no more unitary. Instead, it is ‘‘sta
unitary’’ @11,15#. Furthermore, whileU is distributive with
respect to multilplication,L is nondistributive. As we will
see, these properties allow us to describe damping and
tuations associated with noise.

A basic requirement onL is that it is invertible. This is
connected with the star unitarity of this transformation@see
comments below Eq.~77!#. In addition to this, our construc
tion of L is based on the following requirements.

~1! TheL transformation is obtained by analytic contin
ation of the unitary transformationU. When there are no
resonances,L reduces toU.

~2! L preserves the measure of the phase space.
~3! L maps real variables to real variables.
~4! L is analytic with respect to the coupling constantl at

l50.
~5! L leads to closed Markovian kinetic equations.
These conditions still leave some freedom to constructL.

To obtain a specific form ofL, we consider the ‘‘simplest’’
extension ofU @see Eq.~85! and comments below#.

We will focus on the dynamical variables of the particl
The action ofL will be restricted to the subset of phas
space functions depending only on the particle degree
freedom. Within this subset, we obtain an exact and inv
ible L transformation.

Furthermore, we will consider the thermodynamic limit
the field modes, where the total energy of the field is
extensive variable. Then, the average action^Jk& of each
field modek satisfies@17#

^Jk&;O~L0!, ~7!

for L→`. The total energy of the field,

Ef5(
k

vk^Jk&→
L

2pE dkvk^Jk&;O~L !, ~8!

is proportional to the volumeL. ~This does not necessaril
imply that the field is Gibbsian.! The existence of the ther
modynamic limit requires an initially random distribution o
the phases of the field modes@18#.
7-2
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STAR-UNITARY TRANSFORMATIONS: FROM . . . PHYSICAL REVIEW E67, 056117 ~2003!
A different situation occurs if the total energy of the fie
is a nonextensive variable. Then, we have^Jk&;O(L21),
i.e., we have a vanishing energy density. We will not co
sider this case in this paper.

In the extensive case, in addition to the damped osc
tion, the particle undergoes an erratic motion due to the
citation caused by the field. This erratic motion includes
Brownian motion component, which is Markovian. The in
tial randomness of the phases of the field modes is a ne
sary condition for the appearance of Brownian motion.
addition, it is essential that the fieldresonateswith the par-
ticle. We need Poincare´ resonances. Under these condition
L permits us to isolate the damping and the Brownian co
ponent of the motion.

Our approach can also be formulated in terms of comp
sets of projection operatorsP (n), which permit to decom-
pose dynamics into a set of orthogonal ‘‘subdynamics’’~see
Sec. VI!. Essentially, we introduce a generalized basis t
permits us to analyze the motion in terms of strictly Marko
ian components. In our case, we study the component
describes Brownian motion. The other components, clum
together, give what is usually called non-Markovia
~memory! effects@14#. The Brownian component is indepen
dent of the initial correlations between the particle and
bath, and in this sense, it has a ‘‘universal’’ character.

The results presented here are based on Refs.@15,16#,
where we constructedL for the quantum Friedrichs mode
The main subject in these papers was the decay of uns
particle states. We showed that theL transformation permits
us to isolate the exponential~Markovian! component of the
decay, which occurs when the energy of the field is non
tensive. The remaining~non-Markovian! component gives
the Zeno effect@19# and long tails@20#, which are conneted
to the appearance of a dressing cloud around the bare
ticle. The dressed unstable state defined throughL has a real
average energy and gives an uncertainty relation between
lifetime and energy~see also Ref.@21#!. Similar consider-
ations can be applied in classical mechanics@22#.

The present paper is organized as follows. In Secs. II
III, we introduce the Friedrichs model and we discuss
equations of motion of the bare particle. In the subsequ
sections, we study the evolution of renormalized~dressed!
particle variables. We consider first~Sec. IV!, the integrable
case where the spectrum of the field is discrete. We can
define the renormalized variables through the unitary tra
formation U. In the continuous spectrum limit, the syste
becomes nonintegrable. In Sec. V, as a first step to introd
L, we extend the renormalized particle modes in the disc
case to the decaying ‘‘Gamow’’ modes in the nonintegra
case. In Sec. VI, we constructL. In Sec. VII, we show the
correspondence between the solution of the Langevin e
tion ~with Gaussian white noise! and theL-transformed vari-
ables. Finally, in Sec. VIII, we derive a Fokker-Planck equ
tion for the L-transformed distribution function. Details o
calculations are given in the Appendixes.

II. THE CLASSICAL FRIEDRICHS MODEL

We consider a classical system consisting of a harmo
oscillator coupled to a classical scalar field in on
05611
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dimensional space. A quantum version of this model h
been studied by Friedrichs@2# and others.

We write the Hamiltonian of the system in terms of th
bare oscillator and field modesa1 andak ,

H5v1a1* a11(
k

vkak* ak1l(
k

V̄k~a1* ak1a1ak* !,

~9!

with a given constant frequencyv1.0 for the harmonic os-
cillator ~particle!, c51 for the speed of light, andvk5uku
for the field. Whenl is small, we can treat the interactio
potential as a perturbation. We assume the system is
one-dimensional box of sizeL with periodic boundary con-
ditions. Then, the spectrum of the field is discrete, i.e.k
52p j /L, wherej is an integer. We assume that

v1Þvk for all k. ~10!

The volume dependence of the interactionVk is given by

V̄k5A2p

L
v̄k , ~11!

where v̄k5O(1). We assume thatv̄k is real and even:v̄k

5 v̄2k . Furthermore, we assume that for smallk

v̄k;vk
1/2. ~12!

An example is the Drude-Ullersma form@7#,

v̄k5
vk

1/2

11vk
2/vM

2
, ~13!

wherevM is the cutoff frequency of the bath.
To deal with the continuous spectrum of the field, we ta

the limit, L→`. In this limit we have

2p

L (
k

→E dk,
L

2p
dk,0→d~k!. ~14!

We will often use the summation sign with the understand
that we replace it by an integral in the limitL→`.

The bare modesa1 , ak satisfy the Poisson bracket rela
tion

i $aa , ab* %5dab , ~15!

where

i $ f ,g%5(
r

F ] f

]ar

]g

]ar*
2

]g

]ar

] f

]ar*
G . ~16!

~The sum includes the discrete indexr 51 as well as the
running indexr 5k.) The bare modes are related to the p
sition x1 and the momentump1 of the particle as

a15Amv1

2 S x11
ip1

mv1
D , ~17!
7-3



tia
-
as
ng
on
a
’’

sic

n
re

h

o

s
-

n

nse
on-

he
le
ion
ill

es.

or
inly

st
o-

ent

S. KIM AND G. ORDONEZ PHYSICAL REVIEW E67, 056117 ~2003!
x15
1

A2mv1

~a11a1* !,

p152 iAmv1

2
~a12a1* !, ~18!

and to the fieldf(x) and its conjugate fieldp(x) as

f~x!5(
k

S 1

2vkL
D 1/2

~ake
ikx1ak* e2 ikx!, ~19!

p~x!52 i(
k

S vk

2L D 1/2

~ake
ikx2ak* e2 ikx!. ~20!

The fieldf(x) corresponds to the transverse vector poten
in electromagnetism, whilep(x) corresponds to the trans
verse displacement field. Our Hamiltonian can be seen
simplified version of a classical dipole molecule interacti
with a classical radiation field in the dipole approximati
@23#. For simplicity, we neglect the interactions proportion
to a1ak anda1* ak* , which correspond to ‘‘virtual processes
in quantum mechanics. This approximation corresponds
the so-called rotating wave approximation@24,4#. If we in-
corporate the virtual processes, then we obtain the clas
version of the Caldeira-Leggett model.

We note that we have anvk5v2k degeneracy in our
Hamiltonian. To avoid some complexity due to this dege
eracy, we rewrite our Hamiltonian in terms of new ba
modes as@22#

H5v1q1* q11(
k

vkqk* qk1l(
k

Vk~q1* qk1q1qk* !,

~21!

where

q1[a1 , qk[H ~ak1a2k!/A2 for k.0

~ak2a2k!/A2 for k<0,
~22!

Vk[HA2V̄k for k.0

0 for k<0,
~23!

vk5A L

2p
Vk . ~24!

In this form, the modeqk with negativek argument is com-
pletely decoupled from the other degrees of freedom. T
new bare modes also satisfy Eqs.~15! and ~16!.

In the subsequent sections, we will use the following n
tations. We define action and angle variablesJs ,as through
the relation

qs5AJse
2 ias, s51,k. ~25!

We defineG as the set of all modes,

G[~q1 ,q1* , . . . ,qk ,qk* , . . . !, ~26!
05611
l
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andGs5(qs ,qs* ) with s51,k, as the set of particle or field
modes. We will also denoteG f as the set of all field mode
G f5$Gk%. We use the notationdG for the phase-space vol
ume element anddG1 , dG f for the particle and the field
components ofdG, respectively

dG5dG1dG f ,

dG15dJ1da1, dG f5)
k

dJkdak. ~27!

We define as well

d~G2G8![d~J12J18!d~a12a18!)
k

d~Jk2Jk8!d~ak2ak8!.

~28!

We consider ensemble averages as inner products:

^F&5 ^̂ Fur&&5E dGF~G!* r~G!. ~29!

For an operatorO the Hermitian conjugate is defined by

^̂ FuOr&&5 ^̂ ruO†F&&* . ~30!

As mentioned in the Introduction, for our model we ca
have both integrable (L finite! and nonintegrable cases (L
→`). In the first case, there are no resonances@see Eq.~10!#
and as we will see, the the system is integrable in the se
of Poincare´. In the second case, the system can become n
integrable in Poincare´’s sense, due to the emergence of t
resonancev15vk between the frequencies of the partic
and the field. This distinction is essential in our construct
of dressed-particle modes. Before coming to this, we w
briefly consider the equations of motion for the bare mod

III. EQUATIONS OF MOTION OF THE BARE-PARTICLE
MODES

The dynamical equations of motion of an oscillat
coupled to a field have been studied by many authors, ma
using the quantum Caldeira-Leggett model@3–7#. Here, we
will write the equations for the Friedrichs model. In contra
to the phenomenological equations describing Brownian m
tion @25#, these equations have memory terms~i.e., they have
time-dependent damping and diffusion coefficients!, and
their time evolution forms a group, since they are equival
to Hamiltonian dynamics.

A. Non-Markovian Langevin equation

Starting from the Hamiltonian equations

qs~ t !5exp~ iL Ht !qs~0!⇒q̇s~ t !5 iL Hqs~ t !, ~31!

we can obtain the exact time evolution of the modesqr as

qs~ t !5(
r

f sr~ t !qr~0!, ~32!
7-4
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STAR-UNITARY TRANSFORMATIONS: FROM . . . PHYSICAL REVIEW E67, 056117 ~2003!
where f rs(t) are complex functions~see Appendix A!.
We will focus our attention on the particle modes

q1~ t !5 f 11~ t !q1~0!1(
k

f 1k~ t !qk~0!,

q̇1~ t !5 ḟ 11~ t !q1~0!1(
k

ḟ 1k~ t !qk~0!. ~33!

Solving for q1(0) in the first equation and replacing the r
sult in the second equation, we get

q̇1~ t !52 iz1~ t !q1~ t !1R~ t !, ~34!

where

z1~ t !5 i
]

]t
ln f 11~ t !, ~35!

R~ t !5(
k

hk~ t !qk~0!, ~36!

hk~ t !5 ḟ 1k~ t !1 iz1~ t ! f 1k~ t !. ~37!

Equation~34! is a non-Markovian equation, because of t
time dependence of the coefficients. The functionz1(t)
[ṽ1(t)2 ig(t) gives the instantaneous frequencyṽ1(t) and
damping rateg(t) of the oscillator~we note that damping
appears only in the nonintegrable case!. R(t) is an erratic
function, since it depends on the initial states of all the fi
modesqk(0) ~see Appendix B!. It plays the role of noise. In
general, this is colored noise, as the functionR(t) has
memory in the autocorrelation,

^R* ~ t !R~ t8!&Þ0 for tÞt8, ~38!

where^ & means ensemble average.

B. Non-Markovian Fokker-Planck equation

We can also derive a non-Markovian equation for the p
ticle distribution function

r1~G1 ,t ![E dG f r~G,t !, ~39!

which allows us to calculate averages of functionsG(G1)
depending only on the particle modes. We assume
G(G1) is a smooth real function ofG1 that vanishes atuq1u
5` and is expandable in the infinite series

G~q1 ,q1* !5 (
m50

`

(
n50

`

Gmnq1*
mq1

n . ~40!

We assume as well thatr(G,t) is factorized att50 into
independent particle and field mode functions and that
field distributions depend only on the actions. In other wor
we have
05611
d

r-

at

e
,

r~G,0!5r1~G1,0!)
k

rk~Jk!. ~41!

Our final assumption is that the volume of the system
large, so we neglect terms of the order of 1/L. This approxi-
mation becomes exact in the continuous spectrum limiL
→`, i.e., in the nonintegrable case. We consider the ext
sive case discussed in the Introduction.

Based on Eq.~34!, we then obtain the non-Markovia
equation~see Appendix C!

]

]t
r1~G1 ,t !5H iz1~ t !

]

]q1
q12 iz1* ~ t !

]

]q1*
q1*

1D~ t !
]2

]q1]q1*
J r1~G1 ,t !, ~42!

where

D~ t !5(
k

F2 iz1* ~ t !1 iz1~ t !1
]

]t G u f 1k~ t !u2^Jk&. ~43!

Equation~42! is of the Fokker-Planck type, but with time
dependent coefficients.

The equations derived in this section are reminiscent
the phenomenological equations for Brownian motion. Ho
ever, the phenomenological equations have important dif
ences: they are Markovian, they break time symmetry,
they describe stochastic processes. One can derive the
nomenological equations using approximations, such as
Markovian approximation. This is shown in Appendix D.

In the rest of the paper, we will study the dynamical ev
lution of renormalized modes. In contrast to the bare mod
the renormalized modes obey exact equations having
same evolution as the phenomenological equations. A
preparation, we first consider the integrable case.

IV. UNITARY TRANSFORMATION FOR INTEGRABLE
CASE

In this section, we present the properties of the canon
transformationU that diagonalizes the Hamiltonian in th
discrete spectrum case, when the size of the boxL is finite.
Later, we will extendU to L through analytic continuation
for L→`. In the integrable case, we can find renormaliz
modesQ̄s , Q̄s* that diagonalize the Hamiltonian throughU.
The new modes are related to the bare modes as

Q̄s5U†qs for s51,k ~44!

in one-to-one correspondence. The operatorU is unitary
U215U†.

The Hamiltonian is diagonalized as

H5(
s

v̄sQ̄s* Q̄s , ~45!

wherev̄s are renormalized frequencies.
7-5
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The new modes satisfy the Poisson bracket relation

i $Q̄r ,Q̄s* %5d rs . ~46!

Since the interaction is bilinear in the bare modes, the n
modes can be found explicitly through a linear superposit
of the bare modes@22#. For the particle we obtain, from th
equationi $H,Q̄1%52v̄1Q̄1,

Q̄15N̄1
1/2S q11l(

k
c̄kqkD , ~47!

where

c̄k[
Vk

v̄12vk

, ~48!

N̄1[~11 j̄ !21, j̄[l2(
k

c̄k
2 . ~49!

The renormalized frequencyv̄1 is given by the root of the
equation

h~v̄1!50, h~z![z2v12(
k8

l2uVk8u
2

z2vk8

, ~50!

which reduces tov1 when l50. For the field modes one
can also find explicit forms~see Appendix A!.

The perturbation expansion of Eq.~47! yields

Q̄15U†q15q11(
k

lVk

v12vk
qk1O~l2!. ~51!

When the spectrum is discrete, the denominator ne
vanishes; each term in the perturbation series is finite. T
implies integrability in the sense of Poincare´; U can be con-
structed by a perturbation series in powers ofln with n>0
integer. In other words,U is analytic atl50.

Since the transformationU is canonical, it is distributive
with respect to multiplication

U†qrqs* 5@U†qr #@U†qs* #5Q̄rQ̄s* . ~52!

Hence, we have

UH5UF(
s

v̄sQ̄s* Q̄sG5(
s

v̄sqs* qs5H̄0 . ~53!

The transformed HamiltonianUH has the same form of th
unperturbed HamiltonianH0, with renormalized frequencies

The canonical transformation can also be introduced
the level of statistical ensemblesr, as shown in the Intro-
duction. In Eq.~3!, we have

L̄0r̄5 iU $H,r%5 i $UH,Ur%,

5F(
s

v̄sS qs*
]

]qs*
2qs

]

]qs
D GUr, ~54!
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where in the second equality we used Eq.~53! and the prop-
erty of preservation of the Poisson bracket by canon
transformations@26#. Hence, the transformed LiouvillianL̄0
does not contain any interaction terms. Ensemble avera
over this transformed density functionr̄ can thus be easily
calculated. For example, for

i
]

]t
^̂ x1uUur&&5 i

]

]t
^x̄1&, ~55!

and similarly for^ p̄1& we get, after substituting Eq.~18! and
integrating by parts,

]

]t
^ x̄1&5

1

m̄
^ p̄1&,

]

]t
^ p̄1&52m̄v̄1

2^x̄1&. ~56!

These are the equations for the free harmonic oscillator~with
renormalized frequencyv̄1 and renormalized massm̄
5mv1 /v̄1). The interaction with the field is eliminated.

Note that the normal modes are eigenfunctions of the
ouvillian L̄0,

L̄0q152v̄1q1 , L̄0q1* 5v̄1q1* . ~57!

This leads to

LHQ̄152v̄1Q̄1 , LHQ̄1* 5v̄1Q̄1* . ~58!

For products of modes, we have

L̄0q1*
mq1

n5@~m2n!v̄1#q1*
mq1

n ,

LHQ̄1*
mQ̄1

n5@~m2n!v̄1# Q̄1*
mQ̄1

n . ~59!

Finally, we note that from distributive property Eq.~52!, we
have

U†q1*
mq1

n5~U†q1*
m!~U†q1

n!. ~60!

V. NONINTEGRABLE CASE: GAMOW MODES

Now we consider the continuous spectrum case, wh
the particle frequencyv1 is inside the range of the continu
ous spectrumvk . In this case, by analytic continuation ofQ̄1

andQ̄1* , we can get new modes which are eigenfunctions
the Liouvillian with complex eigenvalues. These modes
called Gamow modes. Gamow states have been previo
introduced in quantum mechanics to study unstable st
@27–32#. In classical mechanics, Gamow modes have b
introduced in Ref.@22#. In this section, we present the ma
properties of Gamow modes, which will be used for the co
struction ofL.

When we go to the continuous limit, we restrict th
strength of the coupling constantl so that

E dk
l2uvku2

vk
,v1 . ~61!
7-6
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Then the harmonic oscillator becomes unstable. In this c
we have radiation damping. If Eq.~61! is not satisfied, then
we go outside the range of applicability of the ‘‘rotatin
wave approximation’’@see comment after Eq.~20!# as the
Hamiltonian becomes not bounded from below, and gives
radiation damping@33#.

In the continuous spectrum case, divergences appea
the construction ofU, due to resonances. For example, t
denominator in Eq.~51! may now vanish at the Poincar´
resonancev15vk . We have a divergence in the perturbati
expansion inl. To deal with this divergence, we regulariz
the denominator by adding an infinitesimal6 i e. Then, we
get

Q15q11(
k

lVk

v12vk6 i e
qk1O~l2!. ~62!

In the continuous limit, the summation goes to an integ
We take the limit,L→` first ande→` later. Then the de-
nominator can be interpreted as a distribution under the
tegration overk

1

v12vk6 i e
→P 1

v12vk
7 ipd~v12vk!, ~63!

whereP means principal part.
The introduction ofi e in the continuous limit is related to

a change of the physical situation. In the discrete case,
boundaries of the system cause periodicity in the motion
the particle and the field. In contrast, in the continuous c
the boundaries play no role. In the continuous limit, we c
have damping of the particle, as the field emitted from
particle goes away and never comes back. And we can h
Brownian motion, due to the interaction with the continuo
set of field modes. The continuous limit may be well a
proximated by a discrete system during time scales m
shorter than the time scale for which the field goes across
boundaries.

In the continuous limit, we can have damping of the p
ticle either toward the future or toward the past. This cor
sponds to the existence of the two branches6 i e in Eq. ~62!.
Breaking of time symmetry is connected to resonances@34#.

As shown in Ref.@30#, continuing the perturbation expan
sion ~62! to all orders one obtains new renormalized mod
~Gamow modes! associated with the complex frequency

z1[ṽ12 ig, ~64!

or its complex conjugatez1* . Here, ṽ1 is the renormalized
frequency of the particle, and 2g.0 is the damping rate
The complex frequencies are solutions of the equation

h6~v!5v2v12E dk
l2vk

2

~z2vk!v
6

50. ~65!

The 1 (2) superscript indicates that the propagator is fi
evaluated on the upper~lower! half plane ofz and then ana-
lytically continued toz5v.
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The new modes for the2 i e branch in Eq.~62! are given
by

Q̃15N1
1/2Fq11l(

k
ckqkG , ~66!

ck5
Vk

~z2vk!z1

1
, N15S 11l2(

k
ck

2D 21

, ~67!

and its complex conjugate, satisfying

LHQ̃152z1Q̃1 , LHQ̃1* 5z1* Q̃1* . ~68!

The modeQ̃1* decays fort.0 as

eiL HtQ̃1* 5eiz1* tQ̃1* 5e( i ṽ12g)tQ̃1* ~69!

~and similarlyQ̃1).
The modes for the1 i e branch are given by

Q1* 5N1
1/2Fq1* 1l(

k
ckqk* G , ~70!

and its complex conjugate, satisfying

LHQ1* 5z1Q1* , LHQ152z1* Q1 . ~71!

These modes decay fort,0.
The modes we have introduced have quite different pr

erties from the usual canonical variables. Their Poiss
brackets vanish

i $Q1 ,Q1* %5 i $Q̃1 ,Q̃1* %50. ~72!

However, the modesQ̃1 andQ1* are duals; they form a gen
eralized canonical pair

i $Q̃1 ,Q1* %51. ~73!

This algebra corresponds to an extension of the usual
algebra including dissipation. An analog of this algebra h
been previously studied in quantum mechanics@27–32#, in
terms of non-Hilbertian bras and kets.

VI. THE L TRANSFORMATION

Using the above results we now introduceL. In this pa-
per, we will restrict the action ofL to products of particle
modes of the formq1*

mq1
n . This will be enough to calculate

renormalized functions of the particle variables~expandable
in monomials!, which will lead us to the Langevin and
Fokker-Planck equations. The action ofL on more general
functions, including field modes will be considered els
where~see also Refs.@15,22#!.

A. Defining L through its action on particle modes

First, recall that in the integrable case the renormaliz
particle modes are related to the original modes as
7-7
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Q̄15U†q1 , Q̄1* 5U†q1* . ~74!

For products of modes we have as well the relation~60!. In
the continuous spectrum limit, we come to the nonintegra
case. As seen in the preceding section, we eliminate Poin´
divergences in single renormalized particle modes by a
lytic continuation of frequencies to the complex plane~i.e.,
v̄1 goes toz1) leading to Gamow modes. There are tw
branches for the continuation, namely,

Q̄1⇒H Q̃1

Q1 .
~75!

Corresponding to these extensions, we introduceL, the ex-
tension ofU in Eq. ~74!,

Q̃15L†q1 , Q̃1* 5L†q1* ,

Q15L21q1 , Q1* 5L21q1* . ~76!

These relations partially defineL, by its action on single-
particle modes~a more complete definition is given below!.
This definition satisfies the requirements~1!, ~3!, and ~4!
given in the Introduction. We will comment on the remainin
requirements~2! and ~5! below. Note thatL†ÞL21 is not
unitary. Instead, it is ‘‘star unitary,’’

L215L!. ~77!

In our case, where we restrict the action ofL to particle
modes, star conjugation has a simple meaning. It sim
means taking Hermitian conjugation and changingi e⇒
2 i e, so we have, e.g.@L!( i e)#q15@L†(2 i e)#q1. For the
general definition of star conjugation, see Ref.@15#, and ref-
erences therein.

Due to star unitarity, the existence of the star-conjug
transformationL! guarantees the existence of the inve
L21.

As mentioned above, we are interested not only in
renormalized modes, but also the renormalized product
modes,

L†q1*
mq1

n , L21q1*
mq1

n . ~78!

For the integrable case, renormalized products of modes
be easily calculated thanks to the distributive property~60!.
However, as shown below, for the nonintegrable case p
ucts of Gamow modes give new Poincare´ divergences.
Hence, due to the requirement~4! stated in the Introduction
the L transformation has to be nondistributive. This mea
that we still have to define the action ofL on products of
particle modes.

Let us first consider the transformed productL†q1* q1.
Later, we will generalize this to obtain the expressions~78!.
If L† were distributive,L†q1* q1 could be expressed as th

productQ̃1* Q̃15(L†q1* )(L†q1). However, as we show now
this expression gives Poincare´ divergences in the thermody
namic limit. We have
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Q̃1* Q̃15uN1uS q1* 1l(
k

ck* qk* D S q11l(
k

ckqkD
5uN1uS q1* q11lq1* (

k
ckqk1lq1(

k
ck* qk*

1l2(
k,k8

8 ck* ck8qk* qk81l2(
k

ucku2qk* qkD ,

~79!

where the prime in the summation meanskÞk8. Going to
the continuous limit and taking the ensemble average with
ensembler, the last term becomes

(
k

ucku2^qk* qk&→E dkU lvk

~z2vk!z1

1U2

^Jk&, ~80!

where^Jk&5 ^̂ qk* qkur&&. This term has a nonvanishing finit
value in the limitL→` if Eq. ~7! is satisfied. Furthermore, i
the ensembler belongs to the class of ensembles w
d-function singularities in the wave numberk, then Eq.~80!
is non-negligible as compared to the average of theqk* qk8
term in Eq.~79!. For this class of ensembles, the point co
tribution k5k8 is as important as the integration overk8
@35,13,14#:

(
k8

^qk* qk8&;^Jk&;O~L0!. ~81!

~see Appendix E!. This type of ensembles withd-function
singularities is by no means atypical. An example of th
class of ensembles is the Gibbs distribution. For ensem
in this class, we have well-defined intensive and extens
variables in the thermodynamic limit@35#.

To lowest order, we have in Eq.~80!

lvk

~z2vk!z1

1
5

lvk

v12vk1 i e
1O~l3!, ~82!

which leads to

U lvk

~z2vk!z1

1U2

5
l2vk

2

uv12vk1 i eu2
1O~l4!

5
p

e
l2vk

2d~v12vk!1O~l4!→`. ~83!

This diverges whene→0. Hence, Eq.~80! is nonanalytic at
l50 due to the resonance atv15vk . We have Poincare´
divergence in the perturbation series of (L†q1* )(L†q1).

We note that when the energy of the field is nonextens
we have^Jk&;O(1/L). The energy density goes to zero
the infinite volume limit. In this case, the appearance of
Poincare´ divergence in Eq.~80! has no effect on the particle

For quantum mechanics the situation is different. We c
have fluctuations even in nonextensive situations@15# due to
7-8
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vacuum effects. For example, we obtain, for a two-le
atom, an energy fluctuation of the dressed excited s
which is of the order of the decay rate. This gives an unc
tainty relation between energy and lifetime.

Coming back to our main discussion, we conclude t
L†q1* q1 cannot be expressed as the product Eq.~79! sinceL
is, by definition, analytic in the coupling constant. To ma
this transformed product analytic, we make the replacem

l2(
k

ucku2qk* qk⇒l2(
k

jkqk* qk , ~84!

wherejk is a suitable analytic function. Due to the requir
ments onL stated in the Introduction this function is no
quite arbitrary. Indeed, in the integrable case the termqk* qk

would appear inU†q1* q1 asl2(kc̄k
2qk* qk @see Eq.~47!#. In

the nonintegrable casec̄k is extended tock or ck* , and be-
comes complex. Taking into account the requirements~1!,
~3!, and ~4! in the Introduction, we conclude that a suitab
extension ofc̄k

2 to the nonintegrable case is the linear sup
position

jk5rck
21c.c., r 1r * 51, ~85!

wherer is a complex constant to be determined. The relat
r 1r * 51 is the simplest relation that guaranteesjk reduces
to c̄k

2 in the integrable case@see also the comments below E
~F13!#.

So we have@48#

L†q1* q15Q̃1* Q̃11(
k

bkqk* qk , ~86!

where

bk5l2uN1u~2ucku21jk!. ~87!

As shown in Appendix F using the requirement~2!, we ob-
tain

r 5
exp~2 ia/2!

2 cos~a/2!
, N15uN1uexp~2 ia !, ~88!

giving a concrete form ofL in Eq. ~86!. By including the
term bk in Eq. ~86!, we have removed the Poincare´ diver-
gence in the product of Gamow modes. As a consequen

L†q1* q1Þ~L†q1* !~L†q1!. ~89!

This shows the nondistributive property ofL.
For weak coupling, the approximate value ofbk is given

by @15#

bk'
2p

L

l2vk
2g2

@~vk2ṽ1!21g2#2
. ~90!

This has a sharp peak atvk5ṽ1 with a width g. It corre-
sponds to the line shape of emission and absorption of
field by the renormalized particle.
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To find more general transformed productsL†q1*
mq1

n , we
apply the same logic that led to Eq.~86!. Wheneverucku2

appears inQ̃1*
mQ̃1

n , we replace it withjk . This leads to~see
Appendix G!

L†q1*
mq1

n5 (
a50

min(m,n)
m!n!

~m2a!! ~n2a!!a!
Q̃1*

m2aQ̃1
n2aYa,

~91!

where min(m,n) is the smaller ofm, n, and

Y[(
k

bkqk* qk . ~92!

Note thatbk;O(1/L). Hence,Y;O(L0) only if the field
obeys the thermodynamic limit condition, Eq.~7!. Otherwise
Y vanishes as 1/L andL† becomes distributive. Also, whe
there are no resonances,z1 becomes real and bothbk andY
vanish. ThenL† reduces toU† @see Eq.~60!#. In short, both
thermodynamic limit and resonances are necessary to ob
nondistributivity ofL† in Eq. ~91!, which, as we will see in
the following section, gives the fluctuations found in Brow
ian motion.

For L21q1*
mq1

n , we obtain the expression~91! with

Q̃1 ,Q̃1* replaced byQ1 ,Q1* , respectively.

B. Obtaining closed Markovian equations

The L transformation, we have presented satisfies all
requirements~1!–~4! stated in the Introduction. Now we
show thatL also satisfies the requirement~5!, namely, thatL
gives closed Markovian equations. To obtain closed Mark
ian kinetic equations, we first operateL on the Liouville
equation, to obtain Eq.~5!. Kinetic equations involve a pro
jection ~or a part! of the ensembler̃. In order forL to give
closed kinetic of equations, we require that the transform
Liouvillian ũ in Eq. ~5! leaves subspaces corresponding
projections ofr̃ invariant. We will represent these subspac
by projection operatorsP(n), which are orthogonal and com
plete in the domain ofũ,

P(m)P(n)5P(m)dmn , (
n

P(n)51. ~93!

The invariance property ofũ is

P(n)ũ5 ũP(n). ~94!

Thanks to this commutation property, we obtain from Eq.~5!

closed Markovian equations for the projections ofr̃,

i
]

]t
P(n)r̃~ t !5 ũP(n)r̃~ t !. ~95!

We chooseP(n) as eigenprojectors ofL0. We haveL0P(n)

5w(n)P(n), where w(n) are the eigenvalues. Then, for th
integrable case the relation~94! is automatically satisfied
7-9
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since in this caseũ reduces toL̄0, the renormalized free
Liouvillian with eigenprojectorsP(n).

In the Friedrichs model, theP(n) subspaces consist of mo
nomials ~or superposition of monomials! of the field and
particle modes. For example, the monomials

q1* qk5P(1k)q1* qk , q1* qkql* ql5P(1k)q1* qkql* ql ,
~96!

belong to the same subspaceP(1k) with eigenvaluew(1k)

[v12vk .
One may introduce a Hilbert space structure for the eig

functions ofL0, including suitable normalization constan
in the Segal-Bargmann representation@22#. We also note that
L† transformed variablesL†P(n)A generate the kinetic equa
tion ~95! as we havê^L†P(n)Aur(t)&&5 ^̂ AuP(n)ur̃&&.

Now we verify that the relation~94! is satisfied for theL
transformation we have constructed. We restrict ourselve
the components associated with the monomials in Eq.~78!.
These belong to eigenspaces ofL0 with eigenvalues (m
2n)v1. We denote the corresponding projectors asP(mn).
Using Eq.~I4! in Appendix I with q1850, we find

ũ†q1*
mq1

n5@~mz1* 2nz1!q1* q122igmnY#q1*
m21q1

n21 ,

~97!

and similarly

ũq1*
mq1

n5@~mz12nz1* !q1* q112igmnY#q1*
m21q1

n21 .
~98!

Both the left-hand side and the right-hand side of these
equations belong to the same eigenspaceP(mn). This illus-
trates the statement thatũ leaves the subspacesP(n) invari-
ant, satisfying the requirement~5!.

Due to theY term,q1*
mq1

n are not eigenfunctions ofũ, so

P(mn) is not an eigenprojector ofũ. This is quite natural,
since the kinetic processes include both the decay of
particle modes~through emission of the field! and the ab-
sorption of the field modes. These correspond to the first
second terms inside brackets in Eqs.~97! and ~98!, respec-
tively.

C. P subdynamics

We comment on the theory ofP subdynamics, develope
by the Brussels school@11#. We introduce the projectors

P (n)5L21P(n)L. ~99!

Similar to Eq.~93!, they are orthogonal and complete. Fro
Eq. ~94!, it follows thatP (n)LH5LHP (n). Hence, these pro
jectors define independent subspaces that follow indep
dent, closed dynamics. The projectors themselves may
written in terms of generalized eigenstates ofLH , which give
a complex spectral representation of this operator@14#.

From the completeness relation of theP(n) or P (n) pro-
jectors, we can recover the time evolution in the origin
variables as
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r~ t !5(
n

L21P(n)r̃~ t !5(
n

P (n)r~ t !. ~100!

This shows that, as pointed out in the Introduction, dynam
is decomposed into a set of components obeying Markov
equations. In order to actually use Eq.~100!, we need to
know all the componentsP(n)r̃(t) @or equivalently,
P (n)r(t)]. At the present moment, we have only obtained
restricted set of these. This is enough for our present g
Rather than solving the original equations of motion~which
can be done by other standard methods! our goal is to show
that Brownian motion, Gaussian white noise, and damp
are part of dynamics seen in theL representation.

The contruction ofL we have presented here is based
the renormalized particle modes. A more general constr
tion of L starts with the commutation relation~94! together
with the other requirements stated in the Introduction. T
main idea is to associate a ‘‘degree of correlation’’ with ea
subspaceP(n). Dynamics induces transitions among differe
P(n) subspaces. We have a ‘‘dynamics of correlations’’@35#.
This allows us to perform the regularization of denominat
of U in a systematic way, depending on types of transitio
~from lower to higher correlations or vice versa!, which leads
to L. The interested reader can find a presentation of
formulation in Refs.@11,15,22#.

VII. COMPARISON WITH THE PHENOMENOLOGICAL
LANGEVIN EQUATION

In this section, we discuss the relation between the so
tion of the ‘‘phenomenological’’ Langevin equation for th
Friedrichs model andL† transformed particle modes~i.e.,
dressed modes!. We will focus on theL† transformation, so
that the transformed variables decay fort.0 @49# @see Eq.
~69!#. Remarkably, the Langevin equation and the dynam
equations for dressed modes have the same solution.

The phenomenological Langevin equation for the Brow
ian harmonic oscillator appropiate for the Friedrichs mo
has the form (t.0)

d

dt
q̂1~ t !52 i ẑ1q̂1~ t !1R̂~ t !, ~101!

whereR̂(t) is a complex noise source@see Eq.~34!#. We use
the hats to denote ‘‘phenomenological’’ variables. The co
plex coefficient ẑ1[v̂12 i ĝ gives the frequency and th
damping rate of the oscillator. We assumeR̂(t) has the fol-
lowing properties.

~1! R̂* (t) and R̂(t8) have thed-function ~white-noise!
correlation:

^R̂* ~ t !R̂~ t8!&5R̂c
2d~ t2t8!, ~102!

where^& means noise average.
~2! R̂(t) has the Gaussian property
7-10
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^R̂* ~ t1! . . . R̂* ~ tm!R̂~ t18! . . . R̂~ tn8!&

5dmn (
all pairs

^R̂* ~ t i 1
!R̂~ t j 1

8 !&•••^R̂* ~ t i n
!R̂~ t j n

8 !&.

~103!

The noise constantR̂c is determined in Appendix H using
equipartition of energy and assuming the bath is at temp
ture T. The result isR̂c

252ĝkBT/v̂1.
Equation~101! corresponds to the equations

d

dt
x̂1~ t !52ĝ x̂1~ t !1

p̂1~ t !

m̂
1A~ t !, ~104!

d

dt
p̂1~ t !52ĝ p̂1~ t !2m̂v̂1

2x̂1~ t !1B~ t !, ~105!

whereA(t) andB(t) are independent Gaussian white nois
@36#. These equations describe a damped harmonic oscil
with random momentum and force termsA(t) and B(t),
respectively. The equations are symmetrical under resc
position and momentum exchange, which is consistent w
the same symmetry of the Hamiltonian.

The solution of Eq.~101! is given by

q̂1~ t !5q̂1a~ t !1q̂1r~ t !, ~106!

where

q̂1a~ t ![q̂1~0!e2 i ẑ1t, ~107!

q̂1r~ t ![e2 i ẑ1tE
0

t

dt8R̂~ t8!eiẑ1t8. ~108!

The term q̂1a(t) describes the damped harmonic oscilla
without noise, and the termq̂1r(t) describes the behavior du
to the noise.

For later comparison, we calculate the autocorrelat
function ^q̂1*

m(t)q̂1
n(t)&. We have

^q̂q*
m~ t !q̂1

n~ t !&5^@ q̂1a* ~ t !1q̂1r* ~ t !#m@ q̂1a~ t !1q̂1r~ t !#n&

5 (
k50

m

(
l 50

n
m!

~m2k!!k!

n!

~n2 l !! l !
q̂1a*

m2k~ t !

3q̂1a
n2 l~ t !^q̂1r*

k~ t !q̂1r
l ~ t !&. ~109!

The quantity ^q̂1r*
k(t)q̂1r

l (t)& is nonzero only whenk5 l ,
as we can see from Eq.~103!. Considering the fact
that the number of sets of all possible pairs

^R̂* (t1) . . . R̂* (t l)R̂(t18) . . . R̂(t l8)& is l !, we have
05611
a-

s
tor

ed
th

r

n

^q̂1r*
k~ t !q̂1r

l ~ t !&5 l !dklS K eiẑ1* tE
0

t

dt1R̂* ~ t1!e2 i ẑ1* t1e2 i ẑ1t

3E
0

t

dt2R̂~ t2!eiẑ1t2L D l

5 l !dklS R̂c
2~12e22ĝt!

2ĝ
D l

5 l !dklS kBT

v̂1
D l

~12e22ĝt! l . ~110!

Substituting Eq.~107! and Eq.~110! into Eq. ~109!, we get

^q̂1*
m~ t !q̂1

n~ t !&5ei (mẑ1* 2nẑ1)t (
l 50

min(m,n)
m!n!

~m2 l !! ~n2 l !! l !

3q̂1*
m2 l~0!q̂1

n2 l~0!S kBT

v̂1
D l

~e2ĝt21! l .

~111!

Now we can compare the above expression with the tim
evolved dressed productseiL HtL†q1*

mq1
n . We have@see Eqs.

~68! and ~91!#

eiL HtL†q1*
mq1

n5 (
a50

n
m!n!

~m2a!! ~n2a!!a!

3ei (mz1* 2nz1)te2gatQ̃* m2aQ̃n2aYa.

~112!

Writing

e2gat5(
l 50

a
a!

l ! ~a2 l !!
~e2gt21! l ~113!

and l 85a2 l , we have

eiL HtL†q1*
mq1

n5(
l 50

n

(
l 850

n2 l
m!n!

~m2 l 2 l 8!! ~n2 l 2 l 8!! l ! l 8!

3ei (mz1* 2nz1)tQ̃* m2 l 2 l 8Q̃n2 l 2 l 8Yl 1 l 8

3~e2gt21! l

5(
l 50

n
m!n!

~m2 l !! ~n2 l !! l !
ei (mz1* 2nz1)t

3 (
l 850

n2 l
~m2 l !! ~n2 l !!

~m2 l 2 l 8!! ~n2 l 2 l 8!! l 8!

3Q̃* m2 l 2 l 8Q̃n2 l 2 l 8Yl 8Yl~e2gt21! l .

~114!

Using Eq.~91! again, we obtain
7-11
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eiL HtL†q1*
mq1

n5ei (mz1* 2nz1)t(
l 50

n
m!n!

~m2 l !! ~n2 l !! l !

3~L†q1*
m2 lq1

n2 l !Yl~e2gt21! l . ~115!

Comparing Eqs.~111! and ~115!, we see the direct corre
spondences

ẑ1⇔z1 ,

kBT

v̂1

⇔Y5(
k

bkqk* qk , ~116!

^q̂1*
m~ t !q̂1

n~ t !&⇔eiL HtL†~q1*
mq1

n!.

The form and time evolution of the ensemble average of
Langevin equation variables are the same as those
L-transformed variables. Furthermore, if we take the
semble average ofL†q1*

mq1
n , we see a closer correspon

dence. Let us assume that the field actionJk obeys the un-
perturbed Gibbs distribution. The initial distributionr̃0(G)
has the form@with b[1/(kBT)]

r̃0~G!5Cr01~J1 ,a1!expS 2b(
k

vkJkD , ~117!

whereC is a normalization constant,kB is the Boltzmann’s
constant, andT is the temperature. As shown in Eq.~E5!, the
average ofJk over this ensemble is

^Jk&5
1

vkb
5

kBT

vk
. ~118!

To calculate(kbk^Jk&, we need the form ofbk . The ap-
proximate value ofbk is given in Eq.~90!, which for the
weak-coupling case is approximated by thed function
(2p/L)d(vk2ṽ1) @15#. So we get
05611
e
of
-

(
k

bk^Jk&5(
k

bk

kBT

vk
'

kBT

ṽ1

. ~119!

Note thatvk
21 does not make any divergence for smallk,

sincebk is proportional tovk
2;vk for small k.

In short, we obtain a complete correspondence betw
L-transformed modes and Langevin modes@see Eq.~116!#.
The systematic removal of Poincare´ divergences in theL
transformation gives the Gaussian white-noise structure.

VIII. THE FOKKER-PLANCK EQUATION

Using the above results, we can now derive the Fokk
Planck equation for the transformed density functionr̃
5Lr. We start with the transformed equation@see Eq.~6!#

i
]

]t
r̃5 ũ r̃. ~120!

We derive the Fokker-Planck equation forq1 , q1* . We fol-
low the standard derivation found in textbooks~see Refs.
@26,37#!, but now in terms ofL. Consider a test function
G(q1 ,q1* ), which is smooth and vanishes atuq1u5`. Mul-
tiplying this on both sides of Eq.~120! and integrating over
the phase space, we have

E dGG~q1 ,q1* !i
]

]t
r̃~G,t !5E dGG~q1 ,q1* !ũ~G!r̃~G,t !

5E dGdG8G~q1 ,q1* !ũ~G!

3d~G2G8!r̃~G8,t !. ~121!

In Eq. ~121!, ũ(G) meansũ that acts onG variables. We
expandG(q1 ,q1* ) nearq18 andq18* :
E dGG~q1 ,q1* !i
]

]t
r̃~G,t !5E dGdG8H (

m50

`

(
n50

`
1

m!n! S ]m

]~q18* !m

]n

]~q18!n
G~q18 ,q18* !D ~q1* 2q18* !m~q12q18!nJ

3 ũ~G!d~G2G8!r̃~G8,t !. ~122!

Integrating by parts, Eq.~122! becomes

E dGG~q1 ,q1* !i
]

]t
r̃~G,t !5E dG8G~q18 ,q18* ! (

m50

`

(
n50

`
~21!m1n

m!n!

]m

]~q18* !m

]n

]~q18!n

3F E dG~q1* 2q18* !m~q12q18!nũ~G!d~G2G8!G r̃~G8,t !. ~123!
7-12
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We call the quantities inside the brackets in Eq.~123! the
‘‘moments’’ of the order ofm1n. The moments are calcu
lated explicitly in Appendix I. They are given by

E dG~q1* 2q18* !m~q12q18!nũ~G!d~G2G8!

55
z1q18 , m50, n51

2z1* q18* , m51, n50

2ig(
k

bkqk8* qk8 , m51, n51

0 for all otherm andn.

~124!

Substituting Eq.~124! into Eq. ~123!, we get

E dGG~q1 ,q1* !i
]

]t
r̃~G,t !

5E dG8G~q18 ,q18* !S 2
]

]q18
D ~z1q18!r̃~G8,t !

1E dG8G~q18 ,q18* !S 2
]

]q18*
D ~2z1* q18* !r̃~G8,t !

1E dG8G~q18 ,q18* !S ]2

]q18]q18*
D

3S 2ig(
k

bkqk8* qk8D r̃~G8,t !. ~125!

By changing the integration variableG8 to G in the right
hand side of Eq.~125! and eliminatingi on both sides, we
have

E dGG~q1 ,q1* !
]

]t
r̃~G,t !

5E dGG~q1 ,q1* !H ]

]q1
~ iz1q1!1

]

]q1*
~2 iz1* q1* !

1
]

]q1]q1*
S 2g(

k
bkqk* qkD J r̃~G,t !. ~126!

Now suppose thatr̃(G,t) is factorized att50. In other
words, we writer̃(G,0) as

r̃~G,0!5g1~q1 ,q1* !)
k

gk~qk ,qk* !. ~127!

As shown in Appendix J, this factorized form ofr̃ enables us
to write Eq.~126! as
05611
E dG1G~q1 ,q1* !
]

]tE dG f r̃~G,t !

5E dG1G~q1 ,q1* !H ]

]q1
~ iz1q1!1

]

]q1*
~2 iz1* q1* !

1
]2

]q1]q1*
S 2g(

k
bk^qk* qk& D J E dG f r̃~G,t !.

~128!

SinceG(G1) is an arbitrary test function, we can write E
~128! as

]

]t
r̃1~G1 ,t !5H iz1

]

]q1
q12 iz1*

]

]q1*
q1*

12g(
k

bk^Jk&
]

]q1]q1*
J r̃1~G1 ,t !,

~129!

where

r̃1~G1 ,t !5E dG f r̃~G,t !. ~130!

Equation~129! is our Fokker-Planck equation for the norm
modes. This equation is applicable for any initial field co
figuration obeying the extensive condition and Eq.~127!. In
the nonextensive case, the diffusion term containingbk van-
ishes, and the equation describes damping of the oscill
without Brownian motion. For the special case where
field has the unperturbed Gibbs distribution, using the
proximation~119!, we get

]

]t
r̃1~G1 ,t !'H iz1

]

]q1
q12 iz1*

]

]q1*
q1*

1
2gkBT

ṽ1

]2

]q1]q1*
J r̃1~G1 ,t !. ~131!

This is precisely the equation one obtains from the pheno
enological Langevin equation~101!.

The Fokker-Planck equation for other variables can
also derived from Eq.~129! by changing variables. For ex
ample, the Fokker-Planck equation for the position and m
mentumx1 andp1 is given by

]

]t
r̃1~G1 ,t !5H 2

]

]x1
S p1

m̃
2gx1D 1

]

]p1
~m̃ṽ1

2x11gp1!

1
Dx

2

]2

]x1
2

1
Dp

2

]2

]p1
2J r̃1~G1 ,t !, ~132!

where

m̃5mv1 /ṽ1 ,
7-13
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Dx5
2g

m̃ṽ1
(

k
bk^Jk&'

2gkBT

m̃ṽ1
2

,

Dp52m̃gṽ1(
k

bk^Jk&'2m̃gkBT. ~133!

@The approximate values are applicable for the unpertur
Gibbs distribution.# The Fokker-Planck equation for the a
tion variable J1 is given ~after integration over the angl
variablea1) by

]

]t
r̃~J1 ,t !5H 2g

]

]J1
S J12

kBT

ṽ1
D 1DJ

]2

]J1
2

J1J r̃~J1 ,t !,

~134!

where

DJ52g(
k

bk^Jk&'
2gkBT

ṽ1

. ~135!

Equations~132! and~134! coincide~in the weak-coupling
approximation! with the equations for Brownian motion o
an oscillator in an anharmonic lattice derived in Ref.@35#.
Equation ~134! ~in its exact form! was first proposed by
Petrosky@33#.

Note that Eq.~132! is symmetric with respect to the res
caled positionx1 and momentump1. The reason is that the
Hamiltonian considered here is symmetric in rescaledx1 and
p1 to begin with. The same is true for the anharmonic latt
model considered in Ref.@35#. In contrast, the Kramers
~Fokker-Planck! equation@35,38# derived from the Ornstein
Uhlenbeck phenomenological theory of Brownian moti
@39# is not symmetric, because the Brownian force breaks
position-momentum symmetry. In spite of the difference,
the caseg!v1, Eq. ~132! gives the same solution as th
Kramers equation. The solutions of Eq.~132! can be found in
Ref. @35#.

IX. CONCLUSIONS

In this paper, we studied the irreversible and stocha
behavior of an oscillator coupled to a field in the thermod
namic limit, using the star-unitary transformationL. We
showed that the average of dressed-particle modes ha
same time evolution as the ensemble average of par
modes in the Langevin equation~101!. Also, the reduced
distribution function for the particle variables exactly obe
the Fokker-Planck equation~129!, which describes the
damping and diffusion processes. It is remarkable that
systematic removal of Poincare´ divergences by analytic con
tinuation leads to the same structure as that of Gaus
white noise.

Since the Gaussian structure of the fluctuations is com
from the resonances, rather than the specific form of
initial ensemble, our derivation of the Fokker-Planck equ
tion is valid for both Gaussian and non-Gaussian field
sembles.

Our method of isolating Poincare´ divergences can, in
05611
d

e

e
r

ic
-

the
le

e

an

g
e
-
-

principle, be applied to more complicated systems than
one considered here, in order to investigate further the r
tion between noise and dynamics.

We have studied the fluctuations of a particle surround
by a field. One can also consider the fluctuations of the fi
modes induced by the particle. An interesting result is t
fluctuations of theL-transformed field modes appear ev
when the energy of the field is nonextensive. This will
discussed elsewhere@22,40#.

The Markovian equations such as the Langevin
Fokker-Planck equations describe irreversible and stocha
processes. Rather than viewing these equations as app
mations of Hamiltonian dynamics, we see them as describ
components of dynamics. These components can be id
fied through a change of phase-space variables obtaine
the L transformation. This gives a representation with b
ken time symmetry.

In the non-Markovian equations, the effects of dress
are not separated from irreversible~or thermodynamic! pro-
cesses. In our approach, the dressing on the particle is in
porated from the beginning, since we deal with the renorm
ized particles. This allows us to isolate pure thermodynam
behavior such as Brownian motion with a white-noi
source. In this sense, we can aim to reformulate thermo
namics in terms of renormalized particles. This is interest
in view of recent results@7#, which show that the traditiona
thermodynamics may not apply for quantum Brownian m
tion at low temperatures, due to the non-Markovian chara
of quantum noise.
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APPENDIX A: EXACT TIME EVOLUTION OF PARTICLE
AND FIELD MODES

We consider first the integrable case. The time evolut
of the modesqs(t) can be calculated using the renormaliz
modesQ̄s , which are eigenstates of the Liouville operato
We have

eiL HtQ̄s5e2 i v̄stQ̄s . ~A1!

The particle modeQ̄1 is given Eq.~47!. The field modesQ̄k

are found from the equationLHQ̄k52v̄kQ̄k , which gives
7-14
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Q̄k5Nk
1/2Fqk1

lVk

hk~v̄k!
S q11 (

k8(Þk)

lVk8

v̄k2vk8

qk8D G ,

~A2!

where

hk~z![z2v12 (
k8(Þk)

l2Vk8
2

z2vk8

, ~A3!

v̄k5vk1
l2Vk

2

hk~v̄k!
, ~A4!

Nk5F11
l2Vk

2

hk
2~v̄k!

S 11 (
k8(Þk)

l2Vk8
2

~v̄k2vk8!
2D G21

.

~A5!

Note that ṽk5vk1O(1/L) and alsoNk511O(1/L). As
long asL is finite all the denominators are nonvanishing, a
there are no resonances.

We write the linear relations between the dressed and
modes as

Q̄s5(
r

csrqr , qs5(
r

crs* Q̄r . ~A6!

Then, using Eq.~A1!, we get the coefficientsf sr(t) in the
equationqs(t)5( r f sr(t)qr(0) as

f sr~ t !5(
r 8

crr 8e
2 i v̄r 8tcr 8s

* . ~A7!

In the nonintegrable case resonances appear~see Sec. V!
and if we insist on keeping the renormalized modes as u
canonical variables, then the particle modes dissappear
the continuum of field modes~we can, however, introduc
the Gamow modes of Sec. V, which are noncanonic!.
Keeping canonical modes, the Hamiltonian is represente
@2,15,22#

H5(
k

vkQ̃k* Q̃k ~A8!

in the continuous limit. The renormalized field modes a
given by

Q̃k5qk1
lVk

h7~vk!
Fq11(

k8

lVk8

vk2vk87 i e
qk8G , ~A9!

where e is a positive infinitesimal quantity. There are tw
branches, corresponding to analytical continuation to
lower or upper half planes ofvk . For t.0, and given the
initial condition Eq.~41!, it is convenient to take the branc
with 2 i e, since this allows us to separate the exponen
decay of the particle modes fort.0 directly. We get
05611
d

re

al
to

as

e

e

l

q1~ t !5(
k

lVk

h1~vk!
Q̃k~ t !5(

k

lVk

h1~vk!
Q̃k~0!e2 ivkt

5(
k

lVk

h1~vk!
qk~0!e2 ivkt

1(
k

l2Vk
2

uh1~vk!u2
q1~0!e2 ivkt

1(
k

l2Vk
2

uh1~vk!u2 (
k8

lVk8

vk2vk82 i e
qk8~0!e2 ivkt.

~A10!

For t,0, we take the branch with1 i e.

APPENDIX B: RANDOMNESS IN THE FIELD MODES

We choose our initial condition with the form~41!. In
classical mechanics,q10[q1(0) can be determined exactl
sinceq10 is a function of the initial position and momentum
of the particle. For the modesqk0, we need more care. Let u
first write qk0 in terms of the action and angle variables,

qk05AJk0e2 iak0. ~B1!

With the ensemble~41!, we have

lim
L→`

^Jk0&;O~L0! ~B2!

in the thermodynamic limit. For example, for an unperturb
Gibbs thermal distribution of the field modes, we ha
^Jk0&5kBT/vk @see Eq.~E5!#.

For almost all phase points$J10, . . . ,Jk0 , . . . ,
a10, . . . ,ak0 , . . . % out of the ensemble, any two differen
anglesak0 andak80 have no correlation. In other words, th
sequence of angles$akn0% is completely random for almos
all cases. This property allows the existence of the therm
dynamic limit @18#. Indeed, ifak0 is uniformly distributed
over @2p, p# and the sequence of angles$akn0% is com-
pletely random, then the term

(
k

lVk

h1~vk!
qk0e2 ivkt5(

k

lVk

h1~vk!
AJk0e2 i (vk1ak0)t

~B3!

in Eq. ~A10! is O(L0). This is so because the summation
taken over a sequence complex numbers with random ph
and hence it is proportional to the square root of the num
of modes, which in turn is proportional toL. Since Vk
;L21/2, Eq. ~B3! is O(L0). It shows a very irregular time
evolution as the number of modes increases.

Note that ifak0 was a smooth function ofk, then for the
first term of Eq.~A10!, we would have in the limitL→`
7-15
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(
k

lVk

h1~vk!
qk05A L

2p

2p

L (
k

lvk

h1~vk!
AJk0e2 iak0

→A L

2pE dk
lvk

h1~vk!
AJk0 e2 iak0,

~B4!

and since the integral isO(1), this expression would diverg
asO(AL).

APPENDIX C: DERIVATION OF THE NON-MARKOVIAN
FOKKER-PLANCK EQUATION

From the Liouville equation, we have

E dGG~G1!
]

]t
r~G,t !52 i E dGG~G1!LHr~G,t !

5 (
m50

`

(
n50

`

GmnMmn~ t !, ~C1!

where

Mmn~ t ![2 i E dGq1*
mq1

nLHr~G,t !. ~C2!

Using Eq.~30!, we have

Mmn~ t !5E dG$ iL H@q1* ~ t !#m@q1~ t !#n%r~G,0!. ~C3!

SinceLH is a differential operator, we have

iL H@q1* ~ t !#m@q1~ t !#n5m@q1* ~ t !#m21@q1~ t !#niL Hq1* ~ t !

1n@q1* ~ t !#m@q1~ t !#n21iL Hq1~ t !.

~C4!

From Eqs.~31! and ~34!, we have

iL Hq1* ~ t !5 iz1* ~ t !q1* ~ t !1R* ~ t !,

iL Hq1~ t !52 iz1~ t !q1~ t !1R~ t !. ~C5!

Inserting Eqs.~C4! and ~C5! in Eq. ~C3!, we get

Mmn~ t !5Mmn
z ~ t !1Mmn

R ~ t !, ~C6!

where

Mmn
z ~ t !5E dG@ iz1* ~ t !m2 iz1~ t !n#

3@q1* ~ t !#m@q1~ t !#nr~G,0!

5E dG@ iz1* ~ t !m2 iz1~ t !n#q1*
mq1

nr~G,t !,

~C7!

and
05611
Mmn
R ~ t !5Mmn

R,1~ t !1Mmn
R,2~ t !, ~C8!

Mmn
R,1~ t !5E dG m@q1* ~ t !#m21@q1~ t !#nR* ~ t !r~G,0!,

Mmn
R,2~ t !5E dGn@q1* ~ t !#m@q1~ t !#n21R~ t !r~G,0!.

Now we evaluateMmn
R,1(t) in Eq. ~C8!. Using Eq.~36!, we

have

Mmn
R,1~ t !5E dG m@q1* ~ t !#m21@q1~ t !#n(

k
hk* ~ t !qk* r~G,0!.

~C9!

Then, using Eq.~32!, we obtain

Mmn
R,1~ t !5E dG mF f 11* ~ t !q1* 1(

p
f 1p* ~ t !qp* Gm21F f 11~ t !q1

1(
p8

f 1p8~ t !qp8Gn

(
k

hk* ~ t !qk* r~G,0!. ~C10!

Abbreviating f a[ f 1a(t), hk(t)[hk and using binomial ex-
pansions, we get

Mmn
R,1~ t !5E dG (

a50

m21

(
b50

n
~m21!!

~m212a!!a!

n!

~n2b!!b!

3m@ f 1* q1* #m212a@ f 1q1#n2b

3 (
p1•••pa11

(
p18•••pb8

f p1
* ••• f pa

* hpa11
* f p

18
•••

3 f p
b8
qp1
* •••qpa

* qpa11
* qp

18
•••qp

b8
r~G,0!,

~C11!

where we changed the variablek to pa11. Due to the as-
sumed form of the field distribution in Eq.~41!, only expec-
tation values of observables independent of the anglesap of
the field modes are nonzero~in other words, eachqp

j8
field

mode must be multiplied by its complex conjugateqpi
* with

pj85pi). Thus, in Eq.~C11!, we must haveb5a11 and we
get (a11)! possible parings

Mmn
R,1~ t !5E dG (

a50

min(m21,n21)
~m21!!

~m212a!!a!

3
n!

~n212a!! ~a11!!
m@ f 1* q1* #m212a

3@ f 1q1#n212a (
p1•••pa11

u f p1
u2
•••u f pa

u2hpa11
* f pa11

3~a11!!qp1
* qp1

•••qpa
* qpa

qpa11
* qpa11

* r~G,0!.

~C12!
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Note that due to the volume dependence of the coefficie
f p;O(1/AL) and hp;1/AL @which follows from Eq.
~A10!#, we can neglect the cases where two or more of
wave numbers are repeated, e.g.,pi5pj for iÞ j . Indeed,
these cases give contributions of the order ofO(1/L) within
the summations in Eq.~C12!. Canceling (a11)! and writing
k5pa11 andn! 5n(n21)!, we get

Mmn
R,1~ t !5mnE dG (

a50

min(m21,n21)
~m21!!

~m212a!!a!

3
~n21!!

~n212a!!
@ f 1* q1* #m212a@ f 1q1#n212a

3 (
p1•••pa

u f p1
u2•••u f pa

u2qp1
* qp1

•••qpa
* qpa

3(
k

hk* f kqk* qkr~G,0!. ~C13!

Applying the reverse steps from Eqs.~C12! to ~C10!, we get

Mmn
R,1~ t !5mnE dG@q1* ~ t !#m21@q1~ t !#n21

3(
k

hk* ~ t ! f 1k~ t ! qk* qk r~G,0!

5mnE dG @q1* ~ t !#m21@q1~ t !#n21

3(
k

hk* ~ t ! f 1k~ t ! ^qk* qk& r~G,0!1O~1/L !,

~C14!

where due to the factorization property Eq.~41!, we can take
independently the average

^qk* qk&5^Jk&5E dGqk* qkr~G,0! ~C15!

~a similar argument is given in Appendix J!. Bringing the
time dependence back tor, we get

Mmn
R,1~ t !5mnE dG @q1* #m21@q1#n21(

k
hk* ~ t ! f 1k~ t !

3^Jk&r~G,t !. ~C16!

For the second term in Eq.~C8!, we have Mmn
R,2(t)

5@Mnm
R,1(t)#* . Putting everything together in Eq.~C1! with

integration by parts and a few straightforward manipulatio
we obtain
05611
ts

e

,

E dGG~G1!
]

]t
r~G,t !

5E dGG~G1!H iz1~ t !
]

]q1
q12 iz1* ~ t !

]

]q1*
q1*

1D~ t !
]2

]q1]q1*
J r~G,t !, ~C17!

where

D~ t !5(
k

@hk* ~ t ! f 1k~ t !1c.c.#^Jk&. ~C18!

Since G(G1) is an arbitrary test function, we come to th
non-Markovian equation~42! for the reduced distribution
functionr1. Replacing the explicit form ofhk* (t), we obtain
Eq. ~43! as well.

APPENDIX D: MARKOVIAN APPROXIMATION

Phenomenological equations may be obtained from
namics using the so-called Markovian approximation~or the
l2t approximation studied by Van Hove and others Re
@37,41–43#!, where memory effects are neglected~see also
@44–46#!. This approximation is valid if we take the continu
ous spectrum limitL→` ~with Poincare´ resonances!, for
weak coupling and for time scales where the relaxation p
cess dominates over dressing processes~the particle-bath
correlations are negligible@35,4#!.

In this appendix, we consider the Markovian approxim
tion of the dynamical evolution of the bare-particle mode
We will write the weak-coupling approximation of the coe
ficients f 11(t) and f 1k(t), which will give the Markovian
approximation of Eqs.~34! and ~42!.

We start with Eq.~A10!, for t.0. We approximate for
weak couplingl!1,

1

h1~vk!
'

1

vk2z1
. ~D1!

We then separate the pole contribution atvk5z1 and the
branch cut contribution from each term. The pole contrib
tion gives the exponential decaying part and the cut con
bution gives classical Zeno effect and nonexponential beh
ior @22#. Here, we will only consider the pole contribution
in Eq. ~A10!, which amounts to the Markovian approxima
tion. Taking the pole contribution atvk5z1 in the last two
terms of Eq.~A10!, we get

q1~ t !'q1~0!e2 iz1t1(
k

lVk

vk2z1
qk~0!e2 ivkt

2(
k

lVk

vk2z1
qk~0!e2 iz1t. ~D2!

Therefore, we have
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f 11~ t !'e2 iz1t,

f 1k~ t !'(
k

lVk

vk2z1
@e2 ivkt2e2 iz1t#. ~D3!

This leads to

z1~ t !'z1 ,

R~ t !'2 i(
k

lVke
2 ivktqk~0!. ~D4!

For t,0, we can repeat the same procedure, except that
we choose the1 i e branch in Eq.~A9!. Then, we obtain the
following approximate equation

q̇1~ t !'2 iz1q1~ t !1R~ t !, t.0,

q̇1~ t !'2 iz1* q1~ t !1R~ t !, t,0, ~D5!

which has a Langevin form. This equation is expressed
two branches, one fort.0 and the other fort,0. The
change2 iz1⇒2 iz1* corresponds to the changeg⇒2g,

since z15ṽ12 ig. Taken separately, each branch brea
time-reversal invariance, while as a whole time-reversal
variance is kept~note that in the integrable case, we ha
g50 and there is no splitting into two branches!. Comparing
Eq. ~D5! with Eq. ~101! we identify ẑ15z1. Furthermore, the
term R(t) behaves as the white-noise sourceR̂(t) in the
sense that in the pole approximation, the autocorrela
functions of the variablesq̂1 and q1 coincide. Indeed, the
‘‘noise’’ term R(t) in Eq. ~D4! has the same Gaussian pro
erty ~103! as the noiseR̂(t), provided we replace noise av
erages by averages with ensembles of the form~41! @see
discussion below Eq.~C11!#. Then, defining

q1a~ t ![q1~0!e2 iz1t, ~D6!

q1r~ t ![e2 iz1tE
0

t

dt8R~ t8!eiz1t8

5(
k

lVk

vk2z1
@e2 ivkt2e2 iz1t#qk~0!, ~D7!

and following the same steps as in Eqs.~106!–~110!, we get

^q1r*
k~ t !q1r

l ~ t !&5 l !dkl^q1r* ~ t !q1r~ t !& l . ~D8!

In general, we have@with qk0[qk(0)]

^q1r* ~ t1t!q1r~ t !&'K (
k

lVk

vk2z1*
qk0* ~eivk(t1t)2eiz1* (t1t)!

3(
l

lVl

v l2z1
ql0~e2 iv l t2e2 iz1t!L .

~D9!
05611
w

in

s
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For the normalized thermal field ensemble, we have

^qk0* qk80&5dkk8

kBT

vk
. ~D10!

Using this result and going to the continuous limit, we obta
from Eq. ~D9!

^q1r* ~ t1t!q1r~ t !&'E
0

`

dw
l2vw

2

uv2z1u2
kBT

v
~eivt

2e2 iz1teiv(t1t)2eiz1* (t1t)e2 ivt

1eiz1* te22gt!. ~D11!

For g!ṽ1, the integrand is sharply peaked aroundv5ṽ1.
We separate the pole and the cut contributions to the integ
rewriting Eq.~D11! as

^q1r* ~ t1t!q1r~ t !&'^q1r* ~ t1t!q1r~ t !&pole

1^q1r* ~ t1t!q1r~ t !&cut , ~D12!

where

^q1r* ~ t1t!q1r~ t !&pole

5E
2`

`

dv
l2vv

2

uv2z1u2
kBT

v
~eivt2e2 iz1teiv(t1t)

2eiz1* (t1t)e2 ivt1eiz1* te22gt!, ~D13!

^q1r* ~ t1t!q1r~ t !&cut

52E
2`

0

dv
l2vv

2

uv2z1u2
kBT

v
~eivt2e2 iz1teiv(t1t)

2eiz1* (t1t)e2 ivt1eiz1* te22gt!. ~D14!

Using

vz1
'v ṽ1

,
kBT

z1
'

kBT

ṽ1

,

g'pl2v ṽ1

2 , ~D15!

the pole contributions atv5z1 ,v5z1* give

^q1r* ~ t1t!q1r~ t !&pole'
kBT

ṽ1

eiz1* t~12e22gt!. ~D16!

The cut part involves the tail of the Lorentzian distributio
1/uv2z1u251/@(v2ṽ1)21g2#. It gives
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^q1r* ~ t1t!q1r~ t !&cut

'E
0

`

dv
l2v2v

2

uv1z1u2
kBT

v
~e2 ivt2e2 iz1te2 iv(t1t)

2eiz1* (t1t)eivt1eiz1* te22gt!. ~D17!

In the weak-coupling case (g!ṽ1), the cut contribution is
much smaller than the pole contribution. Replacing the re
~D16! in Eq. ~D8! with t50, we obtain the same correlatio
Eq. ~111! obtained from the phenomenological Langev
equation.

We have also

D~ t !'
2gkBT

ṽ1

. ~D18!

Hence, we recover the Markovian Fokker-Planck equat
~131! with ẑ15z1.

APPENDIX E: PROOF OF EQ. „81…

In this appendix, we show by perturbation expansion t
Eq. ~81! is satisfied for the equilibrium Gibbs ensemble. T
same relation is valid for the class of ensembles~generally
nonequilibrium ensembles! having d singularities in the
wave numbers, of which the Gibbs ensemble is a special
@35,13,14#. The Gibbs ensemble is given by

req5C exp~2bH !, ~E1!

whereC is a normalization constant, such that

E dGreq~G!51. ~E2!

In the perturbation expansion, we have

req5C exp~2bH0!S 11lV1
1

2!
l2V21••• D . ~E3!

Due to the angle integrations, only diagonal monomials
nonzero

E dG)
r

qr
* mrqr

nrexp~2bH0!})
r

dmr ,nr
. ~E4!

Considering the explicit form of the potentialV, we then
have
05611
lt

n

t

se

e

^Jk&5E dGJkr
eq5

E dGJkexp~2bH0!

E dG exp~2bH0!

1O~l2!

5

E
0

`

dJkJkexp~2bvkJk!

E
0

`

dJkexp~2bvkJk!

1O~l2!5
1

bvk
1O~l2!,

~E5!

^qk* qk8&5

E dGqk* qk8~l2V2/2!exp~2bH0!

E dG exp~2bH0!

1O~l4!

5l2VkVk8

1

bv1

1

bvk

1

bvk8

1O~l4!. ~E6!

Noting thatVk;L21/2, and(k8;O(L), we obtain the result
~81!. One can check as well that terms of higher order inlV
retain the same volume dependences.

For an ensemble of the form Eq.~41!, we have^qk* qk8&
50, while ^Jk&;O(1). This is a special case of Eq.~81!.

APPENDIX F: L AND PRESERVATION OF THE
MEASURE

From the requirement~2! in the Introduction,L preserves
the measure of phase space. This means that

E dGLr51, ~F1!

E dGL†r51, ~F2!

for any normalized ensembler. The first equality is easily
shown, since it may be written as

E dG~L†1!r51, ~F3!

where 1 is the unit operator. SinceL† can be expressed as
perturbation expansion,

L†511O~lLV!, ~F4!

andLV150, we conclude thatL†151, from which Eq.~F1!
follows. Similarly, one can show the second equality~F2!.

So, Eq.~F2! should be satisfied for the specificL we have
constructed in Sec. VI. This condition will allow us to deriv
the relation~88!. Consider the ensemble

r5C1q1* q1exp~2J/J0!, ~F5!

whereC1 is the normalization factor given by
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Cs5F E dGqs* qsexp~2J/J0!G21

, ~F6!

with

J5(
s

qs* qs , ~F7!

andJ0 a constant that makes the argument of the expone
dimensionless. The factor exp(2J/J0) ensures the existenc
of a finite norm ofr ~see the Segal-Bargmann representat
in Refs. @47,22#!. The total actionJ is invariant of motion,
because we haveL0J50 andLVJ50. Using Eq.~F4!, we
get

L†J5J, L†exp~2J/J0!5exp~2J/J0!. ~F8!

The operatorLV is a differential operator. Applying the chai
rule of differentiation and Eq.~F8!, we conclude that

L†q1* q1exp~2J/J0!5~L†q1* q1!exp~2J/J0!. ~F9!

Inserting the ensemble Eq.~F5! in Eq. ~F2! and using Eq.
~86!, we get

C1E dGuN1uFq1* q11l2(
k

~rck
21c.c.!qk* qkGexp~2J/J0!

51, ~F10!

where the off-diagonal terms such asq1* qk appearing in the

productQ̃1* Q̃1 in Eq. ~86! vanish due to the integration ove
angles in phase space. We can write Eq.~F10! as

C1uN1uFC1
211l2(

k
~rck

21c.c.!Ck
21G51. ~F11!

SinceC15Ck for any k @see Eq.~F6!#, Eq. ~F10! leads to

uN1uF11l2(
k

~rck
21c.c.!G51. ~F12!

This equation plus the conditionr 1r * 51 yield the result
~88!. With this result, we can write

L†q1* q15Q(0)Q̃1* Q̃11P(0)~rQ̃1* Q11c.c.!, ~F13!

whereP(0) is the projector to angle-independent monomi
~such asqs* qs) and Q(0)512P(0). This shows that the
transformed product of particle the modes can be sim
written as a combination of the renormalized particle mo
~i.e., Gamow modes!.

The derivation followed here is similar to the derivatio
followed in Ref.@15#, where we used theL transformation to
define dressed unstable states in quantum mechanics.
only difference is that in Ref.@15# the relationr 1r * 51 was
derived from the requirement that the dressed unstable
has an energy fluctuation of the order of the inverse lifetim
This fluctuation is a quantum effect. Here, we are deal
with classical mechanics, so we postulater 1r * 51 as a ba-
05611
ial

n

s

ly
s

he

te
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g

sic condition. An alternative derivation, presented in Appe
dix A of Ref. @16#, started with the analog of Eq.~F13!, as a
postulate. All the derivations give the same result~88!. Note
that a condition different fromr 1r * 51 would not allow us
to expressL†q1* q1 as a combination of Gamow modes onl
and it would lead to energy fluctuations different from t
inverse lifetime in the quantum case, which would be u
physical.

The preservation of the measure can be proven for m
general ensembles involving monomials of particle mod
which we have considered in Sec. VI. Indeed, from the re
tion (kck* ck521 ~see Ref.@15#!, we have@see Eqs.~F12!
and ~87!#

(
k

bk51. ~F14!

Using this relation as well as the expression~91!, one can
show that forr5Cmnq1*

mq1
nexp(2J/J0) with Cmn a normal-

ization constant, we have

E dGL†r5E dGr5dmn . ~F15!

The proof ~which we will omit here! uses the relation
*dGQ̃1*

mQ̃1
nexp(2J/J0)50. This follows from the fact that

both Q̃1*
mQ̃1

n and exp(2J/J0) are eigenfunctions ofLH with
different eigenvalues, which implies their orthogonality.

APPENDIX G: PROOF OF ANALYTICITY OF L

In this appendix, we show that Eq.~91! removes all the
nonanalytic ucku2 terms, replacing them byjk5rck

21c.c.
First, we derive recursive formulas to calculateL†q1*

mq1
n .

We start with Eq.~91! for m>n:

L†q1*
mq1

n5(
l 50

n
m!n!

~m2 l !! ~n2 l !! l !
Q̃1*

m2 l Q̃1
n2 lYl ~G1!

@the n.m case can be calculated by taking the comp
conjugate of Eq.~G1!#. We have as well

L†q1*
m11q1

n5(
l 50

n
~m11!!n!

~m112 l !! ~n2 l !! l !
Q̃1*

m112 l Q̃1
n2 lYl .

~G2!

For l .0, we have the identity

~m11!!

~m112 l !! l !
5

m!

~m2 l !! l !
1

m!

~m112 l !! ~ l 21!!
.

~G3!

Inserting this in Eq.~G2!, we get
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L†q1*
m11q1

n5Q̃1*
m11Q̃1

n1(
l 51

n F m!

~m2 l !! l !

1
m!

~m112 l !! ~ l 21!! G
3

n!

~n2 l !!
Q̃1*

m112 l Q̃1
n2 lYl . ~G4!

The first term plus the second term give

~L†q1*
mq1

n!L†q1* . ~G5!

~Note thatL†q1* 5Q̃1* .) The third term may be written a
~with l 85 l 21)

(
l 850

n21
m!

~m2 l 8!! ~ l 8!!

n~n21!!

~n2 l 821!!
Q̃1*

m2 l 8Q̃1
n2 l 821Yl 811

5nYL†q1*
mq1

n21 . ~G6!

Therefore,

L†q1*
m11q1

n5~L†q1*
mq1

n!L†q1* 1nYL†q1*
mq1

n21

~m>n!. ~G7!

For m.n we have, from Eq.~G1!,

L†q1*
mq1

n115(
l 50

n
m! ~n11!!

~m2 l !! ~n112 l !! l !
Q̃1*

m2 l Q̃1
n112 lYl .

~G8!

Using Eq.~G3!, we get

L†q1*
mq1

n115Q̃1*
mQ̃1

n111
m!

~m2n21!!
Q̃1*

m2n21Yn11

1(
l 51

n
m!

~m2 l !! F n!

~n2 l !! l !

1
n!

~n112 l !! ~ l 21!! GQ̃1*
m2 l Q̃1

n112 lYl .

~G9!

Adding the first and the third terms, we get

~L†q1*
mq1

n!L†q1 . ~G10!

~Note thatL†q15Q̃1.) Adding the second and fourth term
we get~with l 85 l 21)

(
l 850

n
m~m21!!

~m2 l 821!!

n!

~n2 l 8!! ~ l 8!!
Q̃1*

m2 l 821Q̃1
n2 l 8Yl 811

5mYL†q1*
m21q1

n . ~G11!

Therefore,
05611
L†q1*
mq1

n115~L†q1*
mq1

n!L†q11mYL†q1*
m21q1

n

~m.n!. ~G12!

Equations~G7! and~G12! plus their complex conjugates pe
mit one to constructL†q1*

mq1
n recursively.

Now we prove the analyticity ofL†q1*
mq1

n at l50 from
the recursive relations. In the recursive relation, we sh
that if the lower order terms inm andn such asL†q* mq1

n ,
L†q1*

mq1
n21, and L†q1*

m21q1
n21 are analytic, then the

higher order termsL†q* m11q1
n andL†q1*

mq1
n are also ana-

lytic. Then from mathematical induction, the analyticity
L†q1*

mq1
n is proved for generalm andn ~the m,n case can

be shown in the same way!. In Eq. ~G7!,

L†q1*
m11q1

n5~L†q* mq1
n!L†q1* 1nYL†q1*

mq1
n21

5S (
l 50

n
m!n!

~m2 l !! ~n2 l !! l !
Q̃1*

m2 l Q̃1
n2 lYl D Q̃1*

1nYS (
l 50

n21
m! ~n21!!

~m2 l !! ~n212 l !! l !

3Q̃1*
m2 l Q̃1

n212 lYl D . ~G13!

Suppose that the quantities inside large parenthesis are
lytic in l. The additional nonanalytic terms appear whene
additional productsQ̃1* Q̃1 appear. Since

Q̃15N1
1/2S q11l(

k
ckqkD , ~G14!

eachQ̃1* Q̃1 produces aucku2 term, which is nonanalytic inl.
Let us denote the nonanalytic part of a functionf (l) as
Fn( f (l)). The nonanalytic part in the first term in the righ
hand side of Eq.~G13! is made by the additionalQ̃1* multi-

plied by Q̃1
n2 l , which generatesn2 l termsucku2:

FnF S (
l 50

n
m!n!

~m2 l !! ~n2 l !! l !
Q̃1*

m2 l Q̃1
n2 lYl D Q̃1* G

5(
l 50

n
m!n!

~m2 l !! ~n2 l !! l !
Q̃1*

m2 l Q̃1
n2 l 21Yl~n2 l !l2uN1u

3(
k

ucku2qk* qk

5 (
l 50

n21
m!n!

~m2 l !! ~n2 l 21!! l !
Q̃1*

m2 l Q̃1
n2 l 21Yll2uN1u

3(
k

ucku2qk* qk . ~G15!

The nonanalytic part in the second term in the right hand s
of Eq. ~G13! is coming fromY. Since
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Y5(
k

bkqk* qk5(
k

l2uN1u~2ucku21rck
21r * ck*

2!qk* qk ,

~G16!

the nonanalytic functionucku2 appears insideY.

FnFnY(
l 50

n21
m! ~n21!!

~m2 l !! ~n212 l !! l !
Q̃1*

m2 l Q̃1
n212 lYl G

52l2uN1u(
k

ucku2qk* qk(
l 50

n21
m!n!

~m2 l !! ~n212 l !!a!

3Q̃1*
m2 l Q̃1*

n212 lYl . ~G17!

The nonanalytic parts from the first term and second term
Eq. ~G13! exactly cancels out. So, the left hand side of E
~G13! is analytic in l. Note that terms of the formucku2n

with n.1 give O(1/L) contributions and thus they are ne
ligible.

Next, we show that the left hand side of Eq.~G12! is
analytic in l. The nonanalytic part of the first term in th
right hand side of Eq.~G12! is

Fn@~L†q1*
mq1

n!L†q1#

5FnF S (
l 50

n
m!n!

~m2 l !! ~n2 l !! l !
Q̃1*

m2 l Q̃1
n2 lYl D Q̃1G

5(
l 50

n
m!n!

~m2 l !! ~n2 l !! l !
Q̃1*

m2 l 21Q̃1
n2 lYl~m2 l !l2uN1u

3(
k

ucku2qk* qk

5(
l 50

n
m!n!

~m2 l 21!! ~n2 l !! l !
Q̃1*

m2 l 21Q̃1
n2 lYll2uN1u

3(
k

ucku2qk* qk . ~G18!

The nonanalytic part of the second term in the right ha
side of Eq.~G12! is

Fn@mYL†q1*
m21q1

n#

52ml2uN1u(
k

ucku2qk* qk(
l 50

n
~m21!!n!

~m2 l 21!! ~n2 l !! l !

3Q̃1*
m212 l Q̃1

n2 lYl

52l2uN1u(
k

ucku2qk* qk(
l 50

n
m!n!

~m2 l 21!! ~n2 l !! l !

3Q̃1*
m212 l Q̃1

n2 lYl . ~G19!

Again, the nonanalytic parts of the first and second term
Eq. ~G12! exactly cancel out. The right hand side of E
~G12! is analytic in l. Therefore, from the mathematica
inductionL†q1*

mq1
n is analytic inl.
05611
in
.

d

of

APPENDIX H: CALCULATION OF THE NOISE
CONSTANT R̂c

In this appendix, we determine the noise constantR̂c . We
assume that the noiseR̂(t) comes from the thermal bath wit
temperatureT. In this case, we expect that the system reac
thermal equilibrium fort→`. Furthermore, from the equi
partition theorem, we expect that

1

2
m̂v̂1

2^ x̂1
2&eq5

^ p̂1
2&eq

2m̂
5

1

2
kBT, ~H1!

wherekB is Boltzmann’s constant. Substituting the relatio

x̂1~ t !5A 1

2mpv̂1

@ q̂1~ t !1q̂1* ~ t !#,

p̂1~ t !52 iAmpv̂1

2
@ q̂1~ t !2q̂1* ~ t !# ~H2!

into Eq. ~H1!, we get the conditions

^q̂1
2~ t !&eq1^q̂1*

2~ t !&eq50, ~H3!

v̂1^q̂1* ~ t !q̂1~ t !&eq5kBT. ~H4!

On the other hand, we have

^q̂1* ~ t !q̂1~ t !&eq5 lim
t→`

@^q̂1a* ~ t !q̂1a~ t !&1^q̂1r* ~ t !q̂1r~ t !&#

5 lim
t→`

^q̂1r* ~ t !q̂1r~ t !&, ~H5!

^q̂1r* ~ t !q̂1r~ t !&

5K e22ĝtE
0

tE
0

t

dt1dt2R̂~ t1!R̂* ~ t2!3eiẑ1t121ẑ1* t2)L
5e22ĝtE

0

t

dt1R̂c
2e2ĝt1

R̂c
2~12e22ĝt!

2ĝ
. ~H6!

Substituting this in Eq.~H4!, we get

R̂c
25

2ĝkBT

v̂1

. ~H7!

APPENDIX I: CALCULATION OF THE MOMENTS

In this appendix, we calculate the moments in Eq.~124!.
We have
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E dG~q1* 2q18* !m~q12q18!nũ~G!d~G2G8!

5E dG@ũ†~G!~q1* 2q18* !n~q12q18!m#* d~G2G8!

52E dG@~L†!21LHL†~q1* 2q18* !m~q12q18!n#

3d~G2G8!, ~I1!

where we used the relationLH
† 5LH and LH* 52LH . The

quantity inside the brackets in Eq.~I1! ~which we callI ) is

I 5~L†!21LHL†~q1* 2q18* !m~q12q18!n

52 i
d

dt
~L†!21eiL HtL†~q1* 2q18* !m~q12q18!nu t50

5(
l 50

m

(
j 50

n

~2q18* ! l~2q18! j
m!n!

~m2 l !! ~n2 j !! l ! j ! S 2 i
d

dtD
3~L†!21eiL HtL†q1*

m2 lq1
n2 j u t50. ~I2!

Using Eq.~115!, we have

I 5(
l 50

m

(
j 50

n

~2q18* ! l~2q18! j
m!n!

~m2 l !! ~n2 j !! l ! j ! S 2 i
d

dtD
3 (

a50

min(m2 l ,n2 l )
~m2 l !! ~n2 l !!

~m2 l 2a!! ~n2 j 2a!!a!

3ei ((m2 l )z1* 2(n2 j )z1)tq1*
m2 l 2aq1

n2 j 2aYa~e2gt21!au t50 .

~I3!

Because of the (e2gt21)a term, the only nonvanishing term
in Eq. ~I3! at t50 are fora50 or a51. So the above equa
tion becomes

I 5(
l 50

m

(
j 50

n

~2q18* ! l~2q18! j
m!n!

l ! j ! ~m2 l !! ~n2 j !! S 2 i
d

dtD
3~eiz1* tq1* !m2 l~e2 iz1tq1!n2 j u t501 (

l 50

m21

(
j 50

n21

~2q18* ! l

3~2q18! j
m!n!

l ! j ! ~m2 l 21!! ~n2 j 21!! S 2 i
d

dtD
3ei (z12z1* )t~eiz1* tq1* !m2 l 21~e2 iz1tq1!n2 j 21

3Y~e2gt21!u t50

5S 2 i
d

dtD ~eiz1* tq1* 2q18* !m~e2 iz1tq12q18!nu t50

1S 2 i
d

dtDmnY~12e22gt!~eiz1* tq1* 2q18* !m21

3~e2 iz1tq12q18!n21u t50 . ~I4!
05611
Substituting Eq.~I4! into Eq. ~I1! and integrating withd(G
2G8), we get Eq.~124!.

APPENDIX J: FACTORIZATION PROPERTY

We show the factorization of Eq.~128! when r̃(G,0) has
the form

r̃~G,0!5g1~q1* ,q1!)
k

gk~qk* ,qk!. ~J1!

In Eq. ~128!, by integrating by parts, we can write

E dGG~q1 ,q1* !
]2

]q1]q1*
(

k
bkJkr̃~G,t !

5E dG
]2

]q1]q1*
G~q1 ,q1* !(

k
bkJkr̃~G,t !

5E dGS ]2

]q1]q1*
G~q1 ,q1* !D(

k
bkJke

2 i ũtr̃~G,0!.

~J2!

Let us expand

]2

]q1]q1*
G~q1 ,q1* !5(

m,n
Gmnq1*

mq1
n . ~J3!

We have

E dGq1*
mq1

n(
k

bkJke
2 i ũtr̃~G,0!

5E dGF ~e2 i ũt!†q1
mq1*

n(
k

bkJkG* r̃~G,0!. ~J4!

Since

L0(
k

bkJk50, LV(
k

bkJk5O~1/AL ! ~J5!

and L is expressed in terms ofL0 and LV , ũ5LLHL21

treats(kbkJk like constant. NeglectingO(1/AL) terms, we
can write

E dGq1*
mq1

n(
k

bkJke
2 i ũtr̃~G,0!

5E dG(
k

bkJk@~e2 i ũt!†q1
mq1*

n#* r̃~G,0!. ~J6!
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In Eq. ~J6!, @(e2 i ũt)†q1
mq1*

n#* can be written as@see Eq.
~115!#

@~e2 i ũt!†q1
mq1*

n#* 5~L†!21~eiL HtL†q1*
mq1

n!

5 (
l 50

min(m,n)
m!n!

~m2 l !! ~n2 l !! l !
ei (mz1* 2nz1)t

3q1*
m2 lq1

n2 lYl~e2gt21! l . ~J7!

Since

(
k

bkJkS (
k

bkJkD l

5(
k

bkJkS (
k8Þk

bk8Jk8D l

1O~1/L !,

~J8!

we can write

(
k

bkJk@~e2 i ũt!†q1
mq1*

n#* 5(
k

bkJk@~e2 i ũt!†q1
mq1*

n# f 2k*

1O~1/L !. ~J9!

In Eq. ~J9!, @ # f 2k means that we exclude thekth field mode.
With Eq. ~J9! and neglectingO(1/L) terms, Eq.~J6! be-
comes

E dG(
k

bkJk@~e2 i ũt!†q1
mq1*

n#* r̃~G,0!

5(
k
E dGbkJk@~e2 i ũt!†q1

mq1*
n# f 2k* r̃~G,0!

5(
k
E dGbkJk@~e2 i ũt!†q1

mq1*
n# f 2k* g1~G1!)

k
gk~Gk!

5(
k
E dGkbkJkgk~Gk!E dG f 2k@~e2 i ũt!†q1

mq1*
n# f 2k*

3g1~G1! )
k8Þk

gk8~Gk8!. ~J10!
y-

i-

nt

05611
For anyk, we have

E dGkg~Gk!51. ~J11!

Then we can write

E dGkbkJkgk~Gk!5E dGbkJkg1~G1!)
k

gk~Gk!5bk^Jk&,

~J12!

E dG f 2k@~e2 i ũt!†q1
mq1*

n# f 2k* g1~G1! )
k8Þk

gk8~Gk8!

5E dG@~e2 i ũt!†q1
mq1*

n# f 2k* g1~G1!)
k8

gk8~Gk8!

5E dGq1*
mq1

ne2 i ũtr̃~G,0!, ~J13!

and Eq.~J10! can be written as

E dG(
k

bkJk@~e2 i ũt!†q1
mq1*

n#* r̃~G,0!

5(
k

bk^Jk&E dGq1*
mq1

ne2 i ũtr̃~G,0!

5(
k

bk^Jk&E dGq1*
mq1

nr̃~G,t !. ~J14!

This equation, together with Eqs.~J2! and ~J3!, leads to Eq.
~128!.
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